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A B S T R A C T

The occurrence characteristics of authigenic pyrite during diagenesis in uranium reservoir sandbodies of Zhiluo
Formation in Ordos Basin are investigated. Based on outcrop area investigations and drilled cores observations,
the pyrite is closely related to carbonaceous debris. Microscopically, the host components for pyrite consist of
carbonaceous debris, clay minerals, biotite, the earlier pyrite, and ilmenite by emphasizing on δ34S values via
LA-ICP-MS, as well as observing through optical microscope and scanning electron microscope equipped with
energy dispersive spectroscope. Three kinds of distribution pattern of pyrite are classified as: (i) periphery; (ii)
infilling; (iii) the combined form of the above two. In-situ micrometer-scale sulfur isotope analyses of pyrite
demonstrated that broad-scale isotopes are heterogeneous (from −52.5‰ to +35.4‰ of δ34S) and sulfur is
derived from more than a single source. Significant differences of host components effects on authigenic pyrite
formation are discussed. The carbonaceous debris can supply the energy for the bacterial sulfate reduction
process, and the biotite can provide the source of iron for pyrite precipitation. The ferrous ion can be adsorbed
on the surface of the clay minerals. Meanwhile, the authigenic pyrite is distributed in or around the earlier pyrite
and ilmenite by the indirect adsorption of ferrous ion, and the ilmenite may also provide the source of iron.
Futhermore, the uranium minerals are mainly associated with the authigenic pyrite relevant to carbonaceous
debris and clay minerals, which indicates there exists constraints of authigenic pyrite during diagenesis on the
uranium mineralization.

1. Introduction

The resistate mineral pyrite is the most common sulfide mineral and
one of the most important components in various uranium-bearing
mineral assemblages in sandstone-type uranium deposits (Nash et al.,
1981; Min et al., 2005a; Scott, 2007; Ingham et al., 2014). Pyrite,
widely developed in reductive sandbodies, is generally considered as an
indicator for redox environment (Wignall et al., 2009; Wei et al., 2016),
and also enhances the reducibility of reservoir (e.g., Cai et al., 2007;
Miao et al., 2010a; Rong et al., 2016). Not only could the pyrite be one
of the reductants making the dissolved hexavalent uranium [U(VI)]
transform into insoluble tetravalent uranium [U(IV)] which precipitates
immediately (e.g., Jensen, 1958; Granger and Warren, 1974; Chen and
Guo, 2007; Laduke, 2013; Gallegos et al., 2015), it also plays a role of
adsorbent making the uranium adhere to the surface of its particles
being weathered or not (Goldhaber et al., 1987; Eglizaud et al., 2006;
Qafoku et al., 2009; Miao et al., 2010b). However, data suggest that the

reduction of pyrite during ore formation is very limited compared to
organic matrix, CH4, H2S, etc (e.g., Spirakis, 1996). And the reduction
will significantly decrease when the reaction temperature of fluids be-
comes slightly higher (Jensen, 1958; Rackley, 1972; Lach et al., 2015).
The pyrite plays a more important role in the formation process
(Warren, 1971; Cai et al., 2007; Lach et al., 2015), origin tracing
(Shikazon, 1999; Min et al., 2005b; Akhtar et al., 2017) and ore pro-
specting (Northrop and Goldhaber, 1990; Scott et al., 2009; Zhang
et al., 2017) of uranium deposit.

Studies of iron, sulfur and carbon geochemistry of modern sedi-
ments have led to a better understanding of pyrite formation me-
chanism (Warren, 1972; Raiswell and Berner, 1985; Raiswell, 1997;
Wei et al., 2015). It is believed that the pyrite is the product from the
chemical process of sulfide produced via bacterial sulfate reaction (Min
et al., 2005b; Jaireth et al., 2010; Wei et al., 2013), with either Fe (II) in
sediments or Fe (II) produced via bacterial Fe (III) reduction (Lovley
et al., 1991; Canfield et al., 1992). And in this process, both hydrogen
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sulfide and iron monosulfide are indispensable components to form
varied morphologies of pyrite (Rickard, 1997; Butler and Rickard,
2000). Previous researches suggested that the pyrite in uranium re-
servoir sandbodies possesses multi-stages whose formation processes
are complicated (Jiao et al., 2007; Chen and Guo, 2007; Chen et al.,
2016), and whose formation origins are various in different areas (e.g.,
Ingham et al., 2014; Lach et al., 2015; Chen et al., 2016). Authigenic
pyrite in the diagenetic process may have an inextricable connection
with uranium minerals, and is one of the very important part of the big
pyrite family.

Detailed observations of field outcrop and drilling cores from ur-
anium ore deposits in northeastern and southern Ordos Basin to analyse
the genesis of authigenic pyrite during diagenesis are carried out. In the
uranium reservoir sandbodies, the pyrite has shown its multiple oc-
currence characteristics from both macroscopic and microscopic per-
spectives (Miao et al., 2010b; Chen et al., 2016). Past studies of XRD
and geochemical analysis have demonstrated that the pyrite displayed
extremely heterogeneous distribution in the same diagenetic environ-
ment, indicating that the mass percentage of pyrite in uranium reservoir
sandbodies ranges from 0 to 11.1 wt%, with an average value of 1.8 wt
%, lower than the contents of quartz, feldspar and clay minerals (Cai
et al., 2007; Xie, 2016). In this paper, the diagenetic authigenic pyrite is
chosen as the research object to analyse its occurrence characteristics
and precipitation mechanisms based on sedimentological and geo-
chemical theories. Microtextural analysis and in-situ sulfur isotope
analysis of a suite of pyrite-bearing samples from the two uranium
deposits show there exist preliminary constraints of authigenic pyrite
on the uranium mineralization conditions and sources of diagenetic
fluids for the uranium reservoir sandbodies in Ordos Basin.

2. Geological setting

The Ordos Basin containing abundant mineral resources such as
coal, uranium, oil, natural gas and so on, is one of the most important
energy source basins in China (Huang and Li, 2007; Li, 2007). There are
two uranium deposits distributed in the northeastern named Dongsheng
and the southern named Diantou respectively (Xiao et al., 2004; Chen
et al., 2006; Li et al., 2008) (Fig. 1a).

The sandstone-type uranium deposit is hosted within the large-scale
skeletal sandbodies in the Middle Jurassic Lower Zhiluo Formation
(J2z1) classified into the lower parasequence set (J2z1–1) and the upper
parasequence set (J2z1–2) (Fig. 1b). The lower parasequence set, origi-
nating from a type of braided river and braided river delta, is the pri-
mary ore-bearing stratum (Jiao et al., 2005a,b; Zhao and Ou, 2006;
Zhang et al., 2010).

The Diantou uranium deposit is generated at the oxidation-reduc-
tion zone of shallow bury in the late period of burial diagenesis
equivalent to epigenesis (Chen et al., 2006a,b; Li and Xu, 2006; Liu
et al., 2007; Xing et al., 2008). However, the Dongsheng uranium de-
posit has experienced multistage uranium mineralization, and the
processes can be divided into four main stages, namely preliminary
enrichment during diagenesis, the interlayer oxidation during Late
Jurassic to Paleocene, oil and gas reduction and ore preservation in the
Early Cretaceous, and the transformation and superposition of ore
bodies in the interlayer oxidation zone during Miocene to the present
(Xiang et al., 2005, 2006; Han et al, 2008; Yang et al., 2009; Xue et al.,
2011). Moreover, it is very common that the carbonaceous debris in the
form of retention sediments occurs in the uranium reservoir sandbodies,
enhancing the reducing power of sandstone to a great extent (Deditius
et al., 2008; Jiao et al., 2018; Zhang et al., 2018). And the uranium
minerals are mainly observed in the gray sandstone where a great deal
of carbonceous debris and pyrite are well preserved (e.g., Cai et al.,
2007; Miao et al., 2009).

3. Material and methods

Twenty samples of sandstone and pyrite nodules (SSG-01–14: dif-
ferent rock geochemical types of sandstone including purplish red,
grayish green, yellow and gray sandtones; SSG-15–20: pyrite nodules)
from outcrop combined with sixteen samples from different drilling
wells were set in epoxy resin and prepared as polished thin sections for
optical petrographic work with a Nikon ME600POL optical microscope,
and then the sections were coated by carbon for both petrographic and
mineralogical analysis by a EVO LS 15 scanning electron microscope
equipped with the Aztec X-Max 20 energy dispersive spectrometer at
the Key Laboratory of Tectonic and Petroleum Resources Ministry of
Education at China University of Geosciences (CUG).

In-situ sulfur isotope analyses by Nu Plassma II Laser Ablation Multi-
Collector Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)
were carried out using the Resolution S-155 laser at State Key
Laboratory of Geological Processes and Mineral Resources at CUG.
34S/32S and 33S/32S ratios were measured under the conditions of light
beam with 33 μm, 8 Hz and 50%T. The trace isotopes (34S and 33S) are
related back to 32S (Coplen et al., 2002; Johnston, 2011), following:
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where 3xS refers to one of the minor isotopes. (3xS/32S)sample signifies
the 3xS/32S of an unknown sample and (3xS/32S)std signifies the 3xS/32S
value for the international standard VCDT. Different occurrence of
pyrite grains were selected to text for variations in δ34S and δ33S
summarized in Table 1.

Besides, four carbonaceous debris samples (ZK159-09–01–04) were
selected to analyse its mineral characteristics at the Laboratory of Coal
and Coalbed Methane at CUG. The carbonaceous debris was picked out
using tweezers carefully for fear of combination with clastic particles
and crushed to the grain diameter less than 0.2 mm, between 0.2mm
and 1mm, respectively. Next, the two different components were mixed
with the proportion of 1:5. Finally, the epoxy resin was added to the
mixture by 1:5 in order to get a cylindrical sample. Similarly, polished
section was needed to be coated by carbon for mineralogical analysis in
the SEM.

4. Results

4.1. Morphological and textural observations

4.1.1. Macroscopical characteristics of authigenic pyrite
The pyrite grains are usually distributed nearby the carbonaceous

debris (CD) in uranium reservoir sandbodies in the Shenshangou out-
crop (Fig. 2). The fascinating phenomena have been observed that the
majority of pyrite grains with larger diameter (commonly between 5
and 15 cm) are distributed near the unconformity interface between
uranium reservoir sandbodies in Zhiluo Formation and the coal seam in
Yan’an Formation (Fig. 2a), and the farther the distance between the
pyrite grains and interface is, the smaller the diameter of pyrite will be.
The banded CD with poor orientation at the bottom of sandbodies may
be mainly derived from the coal seams which suffered the strong river
scouring, and there are also many pyrite grains with a maximum dia-
meter of 10 cm formed around it (Fig. 2b). The pyrite grain including
some small carbonaceous debris is found between the two banded CD
(Fig. 2c). In addition, a large number of small pyrite nodules are ob-
served around the CD, and they are oxidized during epidiagenesis
(Fig. 2d).

A few typical occurrence characteristics between pyrite and the CD
in both cross and longitudinal section are observed in drilled cores
(Fig. 3). The quantity and distribution state of pyrite appear to be
controlled by the amount and activity of CD. And the boundary line
between two components is indistinct because the pyrite taking up a
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fraction of space of sandstone is disseminated near the CD (Fig. 3a). In
longitudinal profile, the pyrite as the lenticular form developed upon
CD is related genetically with CD apparently (Fig. 3b). It is a piece of
gravel in the middle of the two lentiform pyrite grains that probably
makes them not integrated perfectly. A part of pyrite grains of 2–5 cm
in diameter approximately covers the banded CD, on which thin banded
gypsum is distributed (Fig. 3c). In another borehole, the earlier pyrite
nodule surrounded by a thin layer of the CD is observed. Most notably,
the later pyrite (at the arrowhead) precipitates in the periphery of the
CD, occupying a small amount of space (Fig. 3d).

4.1.2. Microscopical characteristics of authigenic pyrite

(1) Occurrence states

Our research shows that the components closely related to authi-
genic pyrite during diagenesis in uranium reservoir sandbodies can be
divided into two categories, i.e., organic and inorganic constituents.
The organic component is mainly presented as carbonaceous debris
(CD), and inorgainc components are comprised of the clay minerals,
biotite, pyrite formed earlier and ilmenite.

Fig. 1. Location of the study area in Ordos Basin and spatial relationship between the Jurassic sequence stratigraphic framework. (a). adapted from Liu (1998) and
Ritts et al. (2004). (b). adapted from Jiao et al. (2016).

Table 1
Summary of data obtained during in-situ sulphur isotope analysis. δ Ratios represent a per mil deviation from the universal standard.

Point No. Sample Pyrite morphology 34S/32S Error (E−05) δ34S‰(VCDT) 33S/32S Error(E-06) δ33S‰(VCDT) V

01 D192-31-13 Anhedral, assoc. uranium 0.050525 1.95 35.4 0.0084931 2.18 18.2 6.86
02 GZK127-17 Infill, assoc. biotite 0.049362 1.47 8.4 0.0083964 2.00 4.4 8.28
03 GZK79-25 Euhedral, assoc. clay minerals 0.048599 1.36 −2.8 0.0083467 2.12 −1.5 8.03
04 SSG-16 Cement, assoc. ilmenite 0.049844 0.41 18.2 0.0084385 2.61 9.5 6.25
05 SSG-19 Cement, assoc. ilmenite 0.049848 0.62 18.3 0.0084378 2.54 9.4 6.22
06 T79-0 Cement, assoc. uranium 0.046230 0.35 −52.5 0.0081211 1.67 −26.4 7.13
07 WZK271-17 Euhedral, assoc. clay minerals 0.049730 0.45 19.1 0.0084246 1.73 9.2 7.74
08 XZK239-17 Euhedral, assoc. clay minerals 0.048008 1.62 16.9 0.0084316 2.23 8.6 8.01
09 XZK7-1–01 Cement, assoc. carbonaceous debris 0.046520 0.40 −46.6 0.0081373 2.42 −24.4 6.97
10 XZK7-1–02 Cement, assoc. carbonaceous debris 0.046501 0.49 −47.0 0.0081427 2.13 −23.8 7.58
11 ZKB84-37-02 Cement, assoc. carbonaceous debris 0.047859 0.52 −19.2 0.0082649 1.97 −9.9 7.17
12 ZKB84-37-04 Infill, assoc. biotite 0.048039 1.13 −15.5 0.0082818 2.26 −7.9 7.47
13 ZKB84-37-05 Infill, assoc. carbonaceous debris 0.047765 0.39 −21.1 0.0082523 2.85 −11.4 6.42
14 ZKS0-16 Infill, assoc. biotite 0.047100 1.83 −37.8 0.0082076 2.36 −18.1 7.95
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Corresponding to those observed in outcrop and drilling cores, the
distribution of pyrite is around or in the CD at the microscopical level
(Fig. 4). In the view of transmission light, euhedral pyrite grain is
formed around the banded CD, curved to a certain extent due to the
compaction from pyrite crystallization (Fig. 4a). The another mor-
phology is amorphous pyrite distributed around the CD, all of which fill
in the matrix and the fracture of clastic particles (Fig. 4b). The banded
CD is acting like a magnet, attracting the cement pyrite around it
(Fig. 4c). Another specific state is that the amorphous pyrite filling in
the CD, just the same as that of amorphous pyrite filling in the coal
samples (Fig. 4d).

The inorganic constituents related to authigenic pyrite can be only
observed under optical microscope, and that the role the clay minerals
play should not be ignored (Fig. 5). The authigenic pyrite related with
clay minerals is mainly present as octahedron (Fig. 5a and b) or cube
(Fig. 5c and d), and is also partly as framboids which usually contain
some trace elements (e.g. Ni, As, Se, etc) indicating the source of di-
agenetic fluids. Euhedral pyrite is preserved in the good crystalline
form, which will be not influenced by later diagenetic fluids owing to
the protection from calcite cementation (Fig. 5c and d).

It is prevalent that the pyrite fills in the cleavage of the biotite, and
the morphologies are basically restricted by the direction of cleavage
(Fig. 6). Because the biotite is easily to be deformed and altered during
diagenesis, it will be distorted during the growth of the infilled pyrite
(Fig. 6a). In the oxidized sandbodies, the pyrite filling in the cleavage is
generally oxidized to Fe-oxides, whereas the core of mineral is well
preserved (Fig. 6b). The euhedral pyrite can also be observed in the
cleavage of the biotite around which abundant euhedral and cement
pyrite are distributed (Fig. 6c). A few pyrite grains can be observed in
the grayish green sandstone, however, because of the surrounding of
biotite, the small pyrite grain can be prevent from the later supergene
oxidation (Fig. 6d).

It is also found that the pyrite precipitates around the earlier pyrite
grain, which makes the whole structure well ordered (Fig. 7). The pyrite
morphology observed throughout the clay minerals is polyframboids
which have gone through two evolution stages from microcrystals to
framboids, and then to polyframboids comparable with those docu-
mented by Love (1971) (Fig. 7a). The framboidal state is probably best
described as a metastable form, which can develop into euhedral pyrite
under circumstances of abundant sources, while the framboid com-
parable with that put forward by Sawlowicz (1993) can be preserved in
the core (Fig. 7b). In the pyrite nodules, the homogenous pyrite grain is
isolated from other minerals, with some tiny particles of pyrite pre-
cipitate in the margins (Fig. 7c). It is a common phenomenon that the
pyrite grain is surrounded by the later euhedral pyrite under certain
conditions (Fig. 7d).

The last components related to diagenetic pyrite is the ilmenite,
which is one of the most common heavy minerals in the sandstone
(Fig. 8). Similarly to the CD, pyrite is mainly distributed in the fractures
of the ilmenite, or around it (Fig. 8a). While the fractures are filled by
other constituents in the earlier stage, the pyrite will fill the available
space selectively (Fig. 8b). Significantly, the core of the ilmenite grain is
filled with pyrite and Ti-oxides, but the edge of the grain is still the
ilmenite (Fig. 8c). The same as the shape of the fractures, the pyrite fills
in the space throughout the ilmenite in the pyrite nodule (Fig. 8d).

(2) Distribution pattern

Based on the relationship between diagenetic authigenic pyrite and
the other components in sandbodies mentioned above, three kinds of
distribution patterns are proposed and categorized as: (i) periphery; (ii)
infilling; (iii) the combined form of the above.

One of the most prevalent distribution states, the pyrite is formed in
the periphery of the other components (Fig. 9). The CD is not

Fig. 2. Occurrence characteristics of pyrite (Py) in Shenshangou outcrop, Dongsheng uranium deposit. (a). The connection between the pyrite in uranium reservoir
sandbodies in Zhiluo Formation (J2z1–1) with the coal seam in Yan’an Formation (J2y); (b). The relationship between pyrite and carbonaceous debris (CD) in uranium
reservoir sandbodies; (c). Pyrite grain is distributed between two banded CD. (d). The pyrite grain and many nodules are distributed around the CD.
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completely surrounded by the cement pyrite possibly due to the dif-
ferences of physical properties in the sandbodies (Fig. 9a). In the oxi-
dized sandbodies, the fine-grained pyrite produced around the clay
minerals is well preserved without oxidation on account of the calcar-
eous cements formed before oxidation (Fig. 9b). The pyrite is also
distributed around the pyrite grain, and these two pyrite forms are not
produced at the same time because the fine particles around the or-
thogonal pyrite in cross section appear to be euhedral (Fig. 9c). Simi-
larly, the euhedral pyrite grain precipitates around the ilmenite filling
with Ti-oxides, but the phenomenon is relatively rare (Fig. 9d).

Another existence form of authigenic pyrite during diagenesis is that
the pyrite fills in the cleavages of the biotite, interstices of the micro-
crystals of framboids or the cells of the carbonaceous debris (Fig. 10).
That the banded pyrite filling in the cleavages makes the biotite slightly
deformed, and a conclusion could be drawn that the growing process of
pyrite crystals has the characteristics of anisotropy (Fig. 10a). Due to
the interstices between microcrystals, the frambiods will be developed
more closely when the material sources of the iron and sulfur are
abundant and the conditions are necessary (Fig. 10b). Another way of
the infilling is to fill in the cell of the carbonaceous debris. Although the
cellular structure is well preserved, the material compositions are
competely destroyed by and replaced with pyrite mineral (Fig. 10c and
d).

The last distribution pattern is that the pyrite is distributed not only
in the fracture or cleavage of the minerals but also around the con-
stituents (Fig. 11). Only when the source of pyrite is abundant can the
existence form be observed. Obviously, the ilmenite is the most

common constituents (Fig. 11). However, the earlier pyrite can also act
as the host mineral.

4.2. Sulfur isotope compositions

Results of in-situ sulfur isotope analysis are summarized in Table 1.
The δ34S values are broadly heterogeneous, ranging from −52.5 to
+35.4‰ (n−14). Distinct populations are recognized within this
unusually broad range of values, which correlate with occurrence states
of authigenic pyrite to some extent. The plot that δ34S is against δ33S
demonstrates that there is a large variation in isotopic values from
different horizons within the same uranium reservoir sandbodies
(Fig. 12).

The δ34S data of pyrite associated with carbonaceous debris ranges
from−47.0‰ to−19.2‰. The sulfur isotope values recorded in pyrite
filling in the biotite display a broader range of δ34S (−37.8‰ to
+8.4‰) and δ33S. However, the distribution of δ34S values in pyrite
grains associated with both clay minerals and ilmenite is in a relatively
smaller range, from −2.8‰ to+ 19.1‰, and +18.2‰ to +18.3‰
respectively. Because of the small size (< 33 μm) of the authigenic
pyrite grain formed around the earlier pyrite grains, the sulfur isotope
values can’t be obtained, but this δ34S data may be assumed a little
different from those associated with clay minerals. Besides, the analysis
results of δ34S for the pyrite associated with uranium show a very broad
range (−52.5‰ to +35.4‰).

Fig. 3. Occurrence characteristics of pyrite (Py) in drilled cores. (a). Disseminated pyrite is distributed around the carbonaceous debris (CD), ZKB2015-4, 560.65 m,
Dongsheng uranium deposit; (b). Pyrite grains are formed upon the carbonaceous debris, ZK004, 456.35m, Diantou uranium deposit; (c). Pyrite grain covers the
carbonaceous debris on which thin banded gypsum (Gp) is distributed, ZK448-02, 509.97 m, Diantou uranium deposit; (d). The pyrite grain is surrounded by CD,
followed by the later pyrite, ZK323-01, 531.80m, Diantou uranium deposit.
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5. Discussion

5.1. Origin of authigenic pyrite

The presence of pyrite with other components in the uranium re-
servoir sandbodies of Zhiluo Formation from outcrop area investiga-
tions, drilled cores observations and thin section analyses suggests that

pyrite selectively precipitates from diagenetic fluids. Previous studies
show that both Fe-dominated fluids and sulfate or sulfide are necessary
to form pyrite during diagenesis (Butler and Rickard, 2000; Taylor and
Macquaker, 2000; Min et al., 2005b).

During the diagenetic process, the dissolved Fe (III) from the fluids
containing oxygen will be reduced to iron monosulfide completely
when it reached a certain depth interpreted as the reducing

Fig. 4. Occurrence relationship between
pyrite (Py) and carbonaceous debris (CD).
(a). Euhedral pyrite grain is distributed
around the banded carbonaceous debris,
ZKB84-37-06, 398.54m; (b). Amorphous
pyrite is filled in the matrix and fracture of
clastic particles around carbonaceous
debris, ZKC60-28-01, 538.56 m; (c). The
carbonaceous debris is almost surrounded
by cement pyrite, ZKB84-37-02, 438.56 m;
(d). The carbonaceous debris is filled with
amorphous pyrite, ZKB84-37-05, 406.06 m.

Fig. 5. Occurrence relationship between pyrite (Py) and the clay minerals. (a). Octahedral pyrite grain is distributed in the clay minerals surrounded by calcite (Cal);
(b). Octahedral pyrite grain is surrounded by clay minerals; (c) and (d). Rectangular pyrite grain is preserved well in the clay minerals.
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environment in the uranium reservoir under the ground. At the same
time, both the Fe (II) in sediments and the Fe (II) reduced by Fe (III) via
reducing bacteria will react with hydrogen sulfide to produce iron
monosulfide (e.g., Sweeney and Kaplan, 1973; Rickard, 1997; Butler
and Rickard, 2000). And the reaction equations are described as fol-
lows, respectively:

+ + + → + + ++ − +O Fe H S CH SO FeS CO H2
3

2 4 4
2

2 (2)

+ → ++ +Fe H S FeS 2H2
2 (3)

where FeS is an electroactive and dissolved species, and is one of the
direct reactants to produce pyrite.

Moreover, no sulfur-rich organic matter is found in the uranium
reservoir sandbodies in the area, and combined with the negative δ34S

Fig. 6. Occurrence relationship between pyrite (Py) and biotite (Bt). (a). Pyrite fills in the cleavage of the biotite, ZKB84-37-04, 412.67m; (b). Pyrite intergrows with
Fe-oxides in biotite; (c). Euhedral pyrite grains are distributed in and around the biotite, ZKS0-16, 745.65 m; (d). The pyrite grain is absolutely surrounded by biotite.

Fig. 7. Occurrence relationship between the
earlier pyrite (Py1) and the later pyrite
(Py2). (a). The framboids (F-Py1) and the
plyframboids (F-Py2) are surrounded by
clay minerals and calcite (Cal); (b). The core
of the pyrite grain (Py2) is the framboidal
pyrite (F-Py1); (c). Some tiny particles of
pyrite (Py2) is found in the periphery of the
pyrite grain (Py1); (d). The euhedral pyrite
(Py2) is formed on the outside of the pyrite
grain (Py1), surrounded by calcite.

L. Yue, et al. Ore Geology Reviews 107 (2019) 532–545

538



values as low as −52.5‰, which suggests that the sulfur with negative
δ34S values originates from the bacterial sulfate reduction (Cai et al.,
2002, 2007). Sulfate-reducing bacteria preferentially utilizes sulfate
with light sulfur (Chambers and Trudinger, 1979), and organic material
in the sedimentary systems supplies the energy for the reduction
(Warren, 1972; Beier and Feldman, 1991):

+ → +− −2[CH O] SO 2HCO H S2 4
2

3 2 (4)

in which CH2O represents organic matter, including functionalized

compounds such as carboxylic acids and alcohols (e.g., Jobson et al.,
1979; Reynolds and Goldhaber, 1982; Raiswell and Berner, 1985).

Therefore, the pyrite will precipitate probably when both iron
monosulfide and hydrogen sulfide are produced in or transported into
the same locality at the same time (e.g., Guevremont et al., 1998; Cai
et al., 2008), and the pyrite around the organic matter will have a
negative δ34S value. The reaction equation is described as follows:

+ → +FeS H S FeS H2 2 2 (5)

Fig. 8. Occurrence relationship between
pyrite (Py) and ilmenite (Ilm). (a). The
pyrite is distributed in and around the il-
menite grain, SSG-15; (b). The pyrite fills in
the fractures without any other composi-
tions in the earlier stage, SSG-19; (c). The
pyrite and Ti-oxides fill in the core of the
ilmenite, SSG-16; (d). The pyrite is dis-
tributed in the fracture throughout the il-
menite. Ilm(Mn)-the ilmenite containing
manganese element, SSG-16. Qtz-quartz,
Kfs-K-feldspar.

Fig. 9. The distribution pattern of pyrite
(Py) formed in the periphery of other com-
ponents. (a). Pyrite is distributed around the
carbonaceous debris (CD), ZKB84-37-03,
424.85 m; (b). Pyrite is distributed around
the clay minerals; (c). The fine pyrite frag-
ment (Py2) is formed around the pyrite
grain (Py1); (d). The pyrite grain is dis-
tributed in the periphery of the ilmenite
(Ilm), with the Ti-oxides in the core, SSG-08.
Bt-biotite, Cal-calcite, Kfs-K-feldspar.
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Based on the above analyses, such components that are the source of
iron or hydrogen sulfide, or have impacts on its occurrence states will
affect the crystallization and precipitation of authigenic pyrite during
diagenesis in the sandbodies.

The carbonaceous debris is the most closely related to pyrite and
plays an important role in the process of uranium mineralization
(Wulser et al., 2011; Riegler et al., 2016). The locality is generally re-
garded as the reducing microenvironment as long as the carbonaceous
debris is well preserved (Kortenski and Kostova, 1996; Sun, 2016). As a
kind of organic matters, the CD can supply the energy for the sulfate
reduction to produce hydrogen sulfide, thus it will be easier to form
pyrite around it and each one has a negative δ34S value (−47.0‰ to
−19.2‰) during diagenesis. Moreover, the different numerical value
may represent the different degrees of the reduction.

Differently, previous researches have shown that the clay minerals
possess a high specific surface area and a good adsorption performance
(e.g., Wang and Zhao, 2012; Chen et al., 2015). Most of the pyrite
grains occurred around the clay minerals display relative 34S enrich-
ment (+16.9‰ and +19.1‰). The dissolved ferrous iron may be ad-
sorbed on the surface of the clay minerals from diagenetic fluids, and

the authigenic pyrite will be produced when the hydrogen sulfide is
supplied without the participation of microorganism or organic mat-
ters.

Compared with CD, the biotite containing iron can be the source for
pyrite formation. And the cleavage in one direction provides the limited
space for pyrite production and preservation. In general, the pyrite
filling in the biotite has relatively positive δ34S values (+8.4‰ in Point
No.02), while the 34S depletion in Point No. 12 (−15.5‰) and Point
No.14 (−37.8‰) is characteristic of a biogenic sulfur source (Raiswell,
1982; Seal, 2006) because of the existence of CD at a short distance
away from the biotite.

Although the iron-bearing minerals such as pyrite and ilmenite
provide neither dissolved iron nor hydrogen sulfide for pyrite forma-
tion, the adsorption of pyrite and ilmenite on ferrous ion makes it easier
to produce pyrite again around or filling in the earlier iron-bearing
minerals (e.g., Butler and Rickard, 2000; Taylor and Macquaker, 2000).
However, the phenomenon that both Ti-oxides and pyrite existed in the
core of ilmenite makes it possible to provide the source of Fe for pyrite
formation (Qiao et al., 2013). According to the sulfur isotope analysis,
the pyrite mineralization is developed in an unbalanced open system

Fig. 10. The distribution pattern of pyrite
(Py) filling in the other components. (a).
Pyrite fills in the biotite (Bt), SSG-07; (b).
The pyrite (Py2) fills in the interscites be-
tween microcrystals (F-Py1), surrounded by
calcite (Cal); (c). The cells of carbonaceous
debris with the infillings of pyrite, ZK159-
09–04, 402.10m; (d). The enlargement of
the box in (c), C-organic matters.

Fig. 11. The distribution pattern of pyrite (Py) distributed in and around the other components. (a). Pyrite is formed in the fractures of ilmenite (Ilm) and around it,
SSG-15; (b). Pyrite is distributed in the fracture of ilmentite in which the fine grain of ilmenite is surrounded by cement pyrite (arrow), SSG-17.
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with a low temperature hydrothermal sulfur source (Kohn et al., 1998;
Cai et al., 2007; Xue et al., 2010; Liang et al., 2017). Furthermore, the
further researches need to be done in the future and to offer a com-
prehensive explanation.

5.2. The correlation between pyrite and uranium mineralization

The lower sulfur isotope value (−52.5‰, Table 1) of pyrite related
to uranium minerals is more negative than the known lightest value of
organically derived sulfur (Aplin and Coleman, 1995; Cai et al., 2002),
which indicates that the sulfur with negative δ34S can be originated
from multi-step bacterial sulfate reduction (BSR), indicating a biogenic
origin (Rackley, 1972; Ulrich et al., 2001; Cai et al., 2007; Jiang et al.,
2016; Zhao et al., 2018), and the source of sulfate may be from
groundwater and the Lower Cretaceous gypsum-bearing strata in Dia-
ntou uranium deposit (Cai et al., 2007). While the sulfur may be con-
tributed from a hydrothermal source in an open system with positive
δ34S value (+35.4‰, Table 1) (Holser, 1977; Jiang and Ling, 2004;
Seal, 2006; Zhao et al., 2018).

The study in both underground and outcrop uranium reservoir
sandbodies found that the uranium minerals were closely associated
with the authigenic pyrite distributed around or in the clay minerals
and carbonaceous debris (Fig. 13). The clay minerals are mainly the
products generated by the alteration of potash feldspar, and the ur-
anium minerals are mainly coffinite due to the combination of dissolved
quartz and ore fluids (Xiang et al., 2006; Miao et al., 2010b; Wu et al.,
2016) (Fig. 13a–c). Because of the distribution of Ni, the framboids are
generally interpreted as the products of the early diagenetic processes
(Sawłowicz, 2000), and partially replaced by uranium minerals subse-
quently (Fig. 13d–f). The detection of minor Se in framboidal pyrite in
carbonaceous debris in sample D32-63 (Dongsheng uranium deposit)
provides an insight into late-stage mineralization processes (Fig. 13g),
and noteworthily, the replacement is only found in the diagenetic
framboidal pyrite (containing Ni and Se) controlled by carbonaceous
debris and the clay minerals (Fig. 13h). And in the biotite, the uranium

minerals seem to have a close relationship with altered biotite rather
than the infilled pyrite (Yang et al., 2009; Miao et al., 2010b; Ma et al.,
2013; Chen et al., 2017) (Fig. 13i). However, it was not observed that
uranium minerals precipitated around the authigenic pyrite related to
ilmenite or the earlier pyrite grain.

The uranium minerals are selective for the pyrite formed period,
and the same to the categories of the authigenic pyrite during diagen-
esis, and the selectivity has the inextricably link with the forming time
of uranium and internal flowing space in sandbodies. Previous studies
show that the quantity of pyrite in mineralization zone is significantly
more than that in oxidation zone and reduction zone, which indicates
abundant authigenic pyrite is produced in the processes of uranium
metallogenesis (Yi et al., 2015a,b; Chen et al., 2016; Yi et al., 2017). It
is probably that both the authigenic pyrite connected with biotite, il-
menite or earlier pyrite and the synsedimentary pyrite just play a role of
providing a macro or micro reduction environment. Whereas the pyrite
related to clay minerals or carbonaceous debris not only acts as re-
ductant, but also provides space for adsorption or replacement of ur-
anium, which fully demonstrates that this types of authigenic pyrite
should be formed a bit earlier than uranium minerals during the mi-
neralization stage (Reynolds and Goldhaber, 1983).

Not only could the pyrite (e.g., framboids) adsorb the uranium with
high specific surface area (e.g., Fig. 13d), but the pyrite acted as re-
ducing agent needs to be transformed into liquid, and the reducing
capacity is determined by the transform speed and amount (Zhao and
Shen, 1986). Moreover, the reduction of sulfur is more effective than
iron (Xu, 2017), which is in accordance with none Fe-oxides observed
in the ore-bearing samples. A great number of simulation experiments
proved that the mechanism of reduction of uranium by pyrite was
mainly due to the precipitation of uranium minerals by S2− formed by
the reaction of pyrite with water under anaerobic microenvironment
(e.g., Wersin et al., 1994; Chen and Guo, 2007):

+ + → + +− + + − +S U H O U SO H2 6
2

4
4
2 (6)

In the sandstone-type uranium deposit, different stages of pyrite

Fig. 12. δ34S values are displayed against δ33S values for each individual analysis. This plot can be used to extract information about the source of the sulfur. Despite
the limited number of analyses per category of pyrite, a large variation of sulfur isotope compositions are recorded.
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(pre-ore, ore and post-ore) are hosted in the sandbodies together. And
the multi-stage pyrite can be distinguished from the morphology ob-
servation, chemical composition analyses and large scale heterogeneity
of δ34S compositions, which probably reflect multi-step reactions, in-
cluding sulfate reduction, pyrite oxidation and reduction (e.g., Rackley,
1972; Reynolds and Goldhaber, 1982). Additionaly, the distribution of
trace element in pyrite grains can reflect the geological information of
ore forming fluids or diagenetic fluids and facilitate to separate its
forming periods (e.g., Ingham et al., 2014; Chu et al., 2015; Lach et al.,
2015). However, there is an indistinct boundary line between uranium
mineralization and the diagenesis. In the process of diagenesis, there
are multiple components contributed to the formation of authigenic
pyrite coefficiently, and each has a different role to make pyrite crys-
tallized and precipitated around or in them (Fig. 14).

6. Conclusions

(1) Authigenic pyrite during diagenesis is closely related to carbonac-
eous debris, clay minerals, biotite, the earlier pyrite, and ilmenite,
and the distribution pattern of pyrite is classified as: (i) periphery;
(ii) infilling; (iii) the combined form of the above two.

(2) In situ δ34S values of the authigenic pyrite range from −47.0‰ to

−19.2‰ associated with carbonaceous debris, −2.8‰ to
+19.1‰ with clay minerals, −37.8‰ to +8.4‰ with biotite,
+18.2‰ to +18.3‰ with ilmenite, and −52.5‰ and +35.4‰
with uranium minerals, indicating different sources of sulfur in-
cluding biogenic origin associated with BSR process and hydro-
thermal source in an open system.

(3) Both the authigenic pyrite related to carbonaceous debris and clay
minerals are most closely associated with the uranium minerals as
absorbent and reductant, and the reduction of sulfur is more ef-
fective than iron, and the pyrite may be formed a bit earlier than
uranium minerals during the mineralization stage.
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