
Contents lists available at ScienceDirect

Ore Geology Reviews

journal homepage: www.elsevier.com/locate/oregeorev

Controls on and prospectivity mapping of volcanic-type uranium
mineralization in the Pucheng district, NW Fujian, China

Jiangnan Zhaoa,⁎, Shouyu Chena,b, Renguang Zuob, Mi Zhouc

a School of Earth Resources, China University of Geosciences, Wuhan 430074, China
b State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
c 294th Geological Party of Fujian Nuclear Industry, Nanping 353000, China

A R T I C L E I N F O

Keywords:
L-function
Fry analysis
Fractal analysis
Artificial neural network
Uranium prospectivity mapping
NW Fujian

A B S T R A C T

A number of volcanic-type uranium deposits occur in Pucheng district, Fujian province, China. Structural
controls and volcanic rocks clearly explain the uranium mineralization in this area. To explore the subtle spatial
associations of uranium occurrences with certain geological features, these uranium deposits were subjected to
L–function, Fry, and fractal analyses. The results reveal that (1) these deposits are clustered, have a bifractal
distribution, and are spatially parallel to the NE-striking faults, (2) the regional-scale NE-striking, and prospect-
scale NE-, and NW-striking faults exhibit significant spatial associations with uranium deposits as illustrated by
the Fry models; (3) intersections of the faults with larger permeability and connectivity promote the miner-
alization process, and (4) the spatial complexities of structures and lithological contacts, quantified by the fractal
dimension, form strong and positive correlations with uranium occurrences and sizes. Finally, by integrating
nine spatial evidential layers representing the controlling factors for the occurrence of mineralization, the ar-
tificial neural network model was applied to map mineral prospectivity for the uranium mineralization. The
receiver operating characteristics (ROC) curve and the under the ROC curve (AUC) were utilized to measure the
performance of the prospectivity models. The model is highly capable of mapping uranium prospectivity because
the AUC is greater than 0.5 and close to 1. The prospectivity mapping confirmed that there is significant po-
tential for uranium mineralization in the study area, which opens up new avenues for further explorations on
uranium deposits in Pucheng district.

1. Introduction

Mineral prospectivity mapping (MPM) is a multi-step process tha-
t involves generating, weighting, and integrating mappable features to
delineate target areas at a given scale (Bonham-Carter, 1994; Carranza
et al., 2009; Carranza, 2011; Zuo and Carranza, 2011; Ford et al.,
2016). However, ascertaining appropriate prospecting criteria that can
appropriately represent the mineral deposit-type sought to generate a
set of evidential layers is a fundamental issue encountered during MPM
(Bonham-Carter, 1994; Carranza et al., 2008; Carranza and Sadeghi,
2010; Yousefi and Nykänen, 2017). To address this issue, a mineral
systems approach was proposed for the identification of crucial tar-
geting criteria, and its major components are as follows (Wyborn et al.,
1994; McCuaig et al. 2010; Porwal et al., 2015): (i) sources of miner-
alizing fluids and transporting ligands; (ii) sources of metals and other
ore components; (iii) energy gradients that drive the movement of
fluids; (iv) migration pathways including inflow and outflow zones for

large amount of fluids; (v) physical and chemical traps for ore pre-
cipitation; and finally (vi) preservation of the deposits. Modeling the
spatial distribution of known mineral deposits associated with geolo-
gical features can also provide insights into the exploration criteria
(Carlson, 1991; Vearncombe and Vearncombe, 1999; Carranza et al.,
2008; Parsa et al., 2018). Till date, fractal (Mandelbrot, 1983), point
pattern (Diggle, 1983), and Fry (1979) analyses have been carried out
for evaluating the spatial distribution of mineral deposits (Vearncombe
& Vearncombe, 1999; Kreuzer et al., 2007; Carranza et al., 2009; Zuo
et al., 2009b; Wang et al., 2015). Another fundamental issue includes
difficulty in integration of various evidential layers to model the pro-
spectivity or likelihood of mineral occurrences (Bonham-Carter et al.,
1989; Zuo et al., 2009a; Zuo and Carranza, 2011; Carranza and Laborte,
2015). Two main approaches, namely data- and knowledge-driven ap-
proaches, are available to address this issue associated with MPM (e.g.,
Bonham-Carter, 1994; Porwal et al., 2003a; Carranza, 2004; Carranza
and Sadeghi, 2010; Porwal and Kreuzer, 2010; Wang et al., 2017). The
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data-driven methods, involve the use of known mineral deposits in a
region of interest, as training sites to establish spatial relationships
between the known deposits and evidential layers (Agterberg et al.,
1990; Cheng and Agterberg, 1999; Brown et al., 2000; Carranza et al.,
2005; Oh and Lee, 2010; Harris et al., 2015; Zhang et al., 2016). In -
contrast, the knowledge-driven methods are based on the expert judg-
ments in discretization of continuous spatial values into arbitrary
classes and then assigning the same weight to all values in each class of
evidential layers (Lisitsin et al., 2014; Asadi et al., 2016; Du et al., 2016;
Yousefi and Carranza, 2017).

Volcanic-type uranium deposits, accounting for ~17.6% of identi-
fied uranium resources in China, are one of the four major types of
uranium deposits in China, and the others include granite (~22.9%),
sandstone (~43%), and carbonaceous–siliceous–pelitic (~8.7%) types
(Cai et al., 2015; Fu et al., 2015). The Pucheng district in Fujian Pro-
vince, characterized by widespread volcanics, is a significant area rich
in volcanic-type uranium resources in the South China uranium pro-
vince. Uranium mineralization was discovered in the late 1950s and has
been mined for decades in this area (Xiao and Wang, 1998; Zhou,
2012). Extensive research efforts have been devoted to identify the
source of uranium within such deposits (Leroy and George-Aniel, 1992;
Lu et al., 1997; Nash, 2010; Maithani and Srinivasan, 2011). Numerous
mineral explorations and scientific studies have shown that these type
deposits often occur at lithological interfaces and in volcanic structures
within rhyodacite, lava, and subvolcanic rocks in collapsed volcanic

basins (Finch et al., 1993; Huang, 2010; Nash, 2010; Li et al., 2012;
Zhou, 2012).

In this study, L–function, Fry, and fractal analyses were carried out
to explore the spatial patterns of known uranium occurrences in
Pucheng district, NW Fujian, China. The data-driven artificial neural
network (ANN) model was then applied for the potential mapping of
uranium. The main objectives of this study include the demonstration of
the geological controls on occurrence of volcanic-type uranium on one
hand, and generation of uranium prospectivity targets for further ex-
ploration on the other.

2. Geological background

2.1. Regional geological setting

The study region located in Pucheng district (27°25′–28°20′N and
117°50′–118°50′E), approximately covers an area of 7000 km2, and is
situated in the northwestern region of Fujian Province, China.
Geologically, the area belongs to the northeastern part of the Cathaysia
Block, and is adjacent to Jiangshan–Shaoxing fault zone and the
Yangtze Block to the north (Liu et al., 2010). The Zhenghe–Dapu and
the Nanping–Ninghua faults define the boundaries of the three terranes
(NW-, SW-, and E-) in Fujian province based on different lithologies,
formations, deformation characteristics, and tectonic evolutions
(BGMRFJ, 1985; Zhang et al., 2008) (Fig. 1). The dominant strata and

Fig. 1. The geographic location and the simplified geological map of Fujian Province, China (after BGMRFJ, 1985; Wei et al., 1997).
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outcrops in the NW-terrain include the Archean–Proterozoic meta-
morphic basements and Mesozoic sedimentary covers; however, the
Late Paleozoic to Early Mesozoic strata are missing due to the effect of
long-term uplift and denudation that occurred during this period (Wei
et al., 1997; Zhang et al., 2008). This district has experienced three
stages of tectonic–magmatic evolution, including the basement forming
stage from the Late Achaean to the Early Paleozoic, the platform cov-
er forming stage from the Late Palaeozoic to the Early Mesozoic, and
finally the active continental margin stage since the Late Mesozoic
(BGMRFJ, 1985; Wei et al., 1997).

2.2. Lithostratigraphy

The strata of this area are dominated by the Archean–Proterozoic
metamorphic basement, unconformably overlain by the Mesozoic vol-
canic rocks. The metamorphic basement consists of Tianjingping
Formation (Ar2t), Mayuan Group (Pt1my), and Mamianshan Group
(Pt2mm). They are characterized by low to high grade metamorphic
rocks including sericite schist, metamorphic sandstone, metamorphosed
siltstone, metamorphic conglomerate, phyllite, amphibolites, and
granulite. The Tianjingping Formation is composed mainly of the bio-
tite plagioclase granulite. The Mayuan Group consists of the Dajinshan
Formation (Pt1d) and the Nanshan Formation (Pt1n) with a conformity.
The former is characterized by biotite–plagioclase gneiss, sillimanite–-
garnet–kyanite schist, and small amounts of quartzite, marble, and
amphibolites, while the latter is characterized by strongly deformed
fine-grained biotite gneiss and biotite–quartz schist (Zhao et al., 2013).
The Mesozoic stratigraphy comprises volcanic, subvolcanic, and

volcanic-sedimentary rocks, such as rhyolite, tuff, lava, tuffaceous
sandstone, and siltstone. From the younger to the older, there are the
Chishi Group (K2ch), the Simaoshan Group (K1sh), the Bantou Forma-
tion (J3b), the Nanyuan Formation (J3n), the Changlin Formation (J3c),
the Lishan Formation (J1l), and the Jiaokeng Formation (T3j) (Fig. 2).

2.3. Intrusive rocks

The study area contains intrusive rocks having mafic to felsic
composition including peridotite, gabbro, syenite, diorite, granite and
granite-porphyry. The intrusive rocks are mainly concentrated in the
Pucheng-Yangyuan uplift (Fig. 1). The dominant rocks are composed of
the Triassic Indosinian and Jurassic-Cretaceous Yanshanian inter-
mediate to acidic intrusive rocks. For example, the Gaoxi granite with
an outcrop area of about 100 km2, locating in the north part of the area
intruded in the Mayuan Group (Fig. 2). It is mainly medium-grained
biotite granite, dated by zircon U–Pb isochron method to yield a
weighted average age of 232 ± 2Ma (Zhao et al., 2013). The Gaoxi
granite underlying Mayangtou deposit consists of comparatively high
uranium concentrations (8.52×10−6 of the average uranium content)
and is considered as source rocks for uranium mineralization (Chen,
1997). Distributed spatially along the NNE–NE–striking faults, the ex-
posed granite batholiths, dykes, and stocks mainly intruded into the
Proterozoic metamorphic rocks and Mesozoic volcanic rocks, showing
genetic relationship with uranium mineralization (Zhou, 2012).

Fig. 2. Simplified geological map of Pucheng district (modified from the study of Zhou, 2012).
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2.4. Structures

A prolonged history of tectonic activity has been recorded for the
rocks in this district. The regional NE–striking fault zones, such as
Chong’an–Shicheng, Pucheng–Wuping, Nanping–Ninghua, and
Zhenghe–Dapu (Fig. 1), not only provide a channel for the rise of tec-
tonic hydrothermal fluids, but also promote uranium migration and
enrichment from the host rocks (Zhang, 1986; Huang, 2010; Li et al.,
2012). Faults in this district strike NW–SE, NE–SW, E–W, and N–S, and
as illustrated by the rose diagram, the major trend of the fault systems
are NE–SW and NW–SE, which cut different lithological units (Fig. 3).
The NE–SW faults concentrated in the volcanic rocks area situated in
the western region, probably belong to the structural traces in the
Jurassic–Cretaceous Yanshanian period. These faults, having 60–80°
dip angles, are mainly characterized by compression or tension-tor-
sional properties, indicating multiple episodes of activities (Zhou,
2012). The NW-SE faults mainly exhibit normal dip-slip displacements;
and these faults are widely distributed in the central and eastern parts
of the area.

3. Uranium mineralization characteristics and conceptual genetic
model

The Pucheng district is located within the Wuyishan metallogenic
belt. This district witnessed strong tectonic activity and large-scale
magmatism. Consequently, not only the sources of metallogenic mate-
rials are present for mineralization, but also the heat sources for the
activation and enrichment of the metallogenic elements are provided
(Zhou, 2012). The district contains abundant Mesozoic granites and
volcanics, as well as tungsten–molybdenum, niobium–tantalum, rare
earth elements and uranium deposits. A number of uranium deposits
and mineralization occurrences have been observed in this area. Major
deposits include the Maoyangtou, Shiyuanlong and Quezishan uranium
deposits shown in Fig. 2, which have approximately 2000 t, 800 t, and
600 t of uranium reserves, respectively; and the grades averaged
0.185%, 0.276% and 0.103%, respectively (Zhou, 2012). Till date, 46
uranium deposits and mineral occurrences have been discovered in this
region, with total combined uranium reserves of more than 4000 tons.
Notable, the genesis of uranium mineralization is closely related to
volcanic activity in the Late Mesozoic that favored mineral enrichment.
The volcanic-type uranium mineralization shows great potential and

Fig. 3. The distribution of faults in Pucheng district and the rose diagram of faults.
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good prospect development for uranium mineral resources in this dis-
trict. The major host volcanic or subvolcanic rocks belong to the Later
Jurassic Nanyuan Formation, which includes a series of continental
intermediate and intermediate acid lavas and pyroclastic rocks. The
mineralized bodies, appearing as vein, lenticular, and stratiform shapes,
are often discontinuous and parallel to the ore-controlling faults. Pro-
cesses involved in the hydrothermal alteration of the host rocks include
hematization, pyritization, silicification, chloritization, sericitization,
carbonation, albitization, and hydromicazation. Noteworthy, hemati-
zation, albitization, silicification and pyritization alterations are closely
related to uranium mineralization, and are well developed in proximity
to the mineralized zones (Nie et al., 1994; Zhou, 2010; Lou, 2013). The
granitic rocks close to the orebodies also exhibit slight chloritization
and silicification alterations. Moreover, Pitchblende and coffinite are
crucial ore minerals in uranium deposits. The gangue minerals include
quartz, fluorite, hydromica, clay minerals, and a small amount of
chlorite and carbonate.

Fig. 4 depicts the exploration section of Maoyangtou deposit.
Table 1 summarizes the main characteristics of three major uranium

deposits currently known in this area. Accordingly, the conceptual ge-
netic model comprehensively describes the characteristics of uranium
ore in this district as follows: (1) uranium deposits and occurrences are
observed in various volcanic environments, some are in or directly
adjacent to calderas or rhyolite dome (e.g. Maoyangtou deposit), others
are observed in outflow rhyolitic tuff distant from source calderas (e.g.
Quezishan deposit) (Fig. 2); (2) homogenization temperatures of fluid
inclusions are between 140 °C and 260 °C (Chen et al., 1995), indicating
that probably the ore-forming fluids are meso– and epithermal. Most of
the U-Pb isotope ages of pitchblende fall in a span of 86.8–107.7Ma,
thus the genesis of the ore deposit probably belongs to post-volcanic
hydrothermal deposits in Cretaceous (Wang et al., 1990; Chen, 1997);
(3) the Mesozoic acid volcanic constitute a primary uranium source for
forming an economic deposit. Among the volcanics, rhyolites
(9–12×10−6 of uranium content) provide an ideal source, followed by
rhyolitic tuffs (6–10× 10−6 of uranium content), and ignimbrites
(5–7.5×10−6 of uranium content), etc. The uranium-bearing volca-
nics are chemically characterized by aluminum supersaturated and rich
in silica, alkali, and potassium; (4) the granitic rocks, in particular, the

Fig. 4. The exploration section of Maoyangtou deposit (modified from the study of Zhou, 2010).

Table 1
Summary of characteristics of major uranium deposits discovered in the Pucheng district of China. Data are sourced from Lu and Wang (1990), Chen et al. (1995,
1997), Lu et al. (1997), Zhou (2010, 2012), and Lou (2013).

Uranium deposits Maoyangtou Quezishan Shiyuanlong

Host rocks Rhyolite (J3n), granite porphyry Rhyolitic tuff and ignimbrite(J3n) Rhyolitic tuff(J3n)
Ore-controlling structure NE-striking faults, followed by NW-

striking faults
NW- and NNE-striking faults NW- and NNE-striking faults

Ore minerals Pitchblende, coffinite, hematite,
brannerite limonite, molybdenum,

Pitchblende, coffinite, hematite, pyrite, galena,
sphalerite, limonite

Pitchblende, coffinite,hematite, pyrite, limonite

Gangue minerals Quartz, fluorite, Hydromica, Clay
Minerals

Quartz, chalcedony, hydromica, kaolin, etc. Quartz, fluorite, calcite,hydromica, etc.

Wall-rock alteration albitization hydromicazation;
silicification, chloritization,
hematization, pyritization

chloritization, hydromicazation silicification,
chloritization,carbonation, pyritization

Hematitization, chloritization,fluoritization,
silicification,sericitization, pyritization,

Orebody shape vein, stockwork, lenticular bedded, stratoid, lenticular bedded, lenticular
Metal element association U, Mo, Ag U, Mo U, Cu, Au
Grade/tonnage 0.185%/2276 t 0.101%/602 t 0.276%/805 t
Mineralization

Temperature (°C)
140–180 170–220 –

Mineralization age (Ma) 89.3–107.7 (Pitchblende of U-Pb age) – 92–115 (Pitchblende of U-Pb age)

J. Zhao, et al. Ore Geology Reviews 112 (2019) 103028
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granite porphyry (9–16×10−6 of uranium content), can been con-
sidered as a potential heat and fluid source to contribute significant
quantities of uranium. Nie et al. (1994) reported that the uranium
mineralization in the granite porphyries and volcanics exhibited the
same mineralization system. Based on the isotope analysis, Chen (1997)
proposed that the uranium in Maoyangtou deposit was probably de-
rived mainly from volcanic and subvolcanic in the early stage, and
leached from granite in the late stage. The superposition of multi-stage
and multiple mineralization favors the formation of economical ur-
anium deposits; and (5) The NE– and NW–striking faults, as well as the
intersection of a fault and a lithological/intrusive contact, have resulted
in the formation of a zone of weakness to control the transportation and
carry large uranium resources. For example, the Quezishan deposit is
mainly controlled by NNE-striking faults and NW-striking faults

(Fig. 5), while Maoyangtou deposit is jointly controlled by NE- and NW-
striking fault zones adjacent to the south of volcanic conduit (Zhou,
2012).

4. Methods and dataset

4.1. Fractal models

Fractal models can efficiently characterize complex geological pro-
cesses. The fractal dimension is often obtained by the box-counting
technique (Velde et al., 1990; Carlson, 1991; Turcotte, 1992; Walsh and
Watterson, 1993; Blenkinsop and Sanderson, 1999; Pérez-López et al.,
2005; Zuo et al., 2009b; Zhao et al, 2011; Zuo, 2016; Zuo and Carranza,
2017). First, a group of cells with different cell sizes r was used to cover
the point (e.g. ore deposit or structural intersection) or lineament (e.g.
fault or geologic boundary) maps, and the number of cells N(r) occu-
pied by points or lineaments was counted. Second, the data pairs for cell
size r and number N(r) were plotted on a log-log graph and linear re-
gression was applied to fit a straight line from which the box dimension
Db could be estimated (Carlson, 1991; Raines, 2008; Carranza, 2009;
Zuo et al., 2009b). This relationship can be expressed as follows:

= −N(r) krD 2b (1)

where r is the measure of cell size. N(r) denotes the cumulative number
of cells containing one or more lineaments or points, Db represents the
box-counting fractal dimension, and k is a constant. Db can be obtained
from the slope coefficient of the linear regression between the dataset of

Fig.5. Simplified geological map of Quezishan uranium deposit showing the
ore-controlling characteristics of faults (modified from Lou, 2013).

Fig. 6. Plot of L(r) versus r for uranium deposits.

Fig. 7. Log-log plots of (a) box size vs. counts, and (b) distance vs. the density of
ore deposits.
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N(r) and r. Mandelbrot (1983) also showed that fractal point patterns
satisfied a radial-density power-law relation, thus:

= −δd C Dr 2 (2)

where d is the density of the points, Dr is the radial-density fractal

dimension (also called cluster dimension), and C is a constant.

4.2. L function

The point patterns can be characterized by three types, which are
Poisson process, regularity and clustering; in these types, the points are
randomly distributed, tend to avoid each other, and tend to occur to-
gether, respectively (Diggle, 1983; Carranza, 2009; Zuo et al., 2009b;
Wang et al., 2015). The L(r) function can be used to judge whether a
point pattern satisfies the Poisson distribution. It can be expressed as
follows (Baddeley and Turner, 2005; Zuo et al, 2009b):

=r K
π

L( ) (r)
(3)

where K(r) can be estimated by using the empirical cumulative dis-
tribution function of pairwise distances between all distinct pairs of the
points xi and xj (i≠ j) in the point pattern (Ripley, 1977)

∑ ∑= ∥ − ∥ ≤
≠

−K r
λ A

w x x r( ) 1 { }
i j i

ij i j2
1

(4)

where A represents the area of the studied region, λ represents the in-
tensity (the ratio of the total number of mineral deposits to A), and wij

denotes the proportion of the circumference of the circle around the
point i with radius r that lies within A. The L(r) function can be used to
determine if a point pattern is randomly distributed (L(r)= r), or ex-
hibits clustering (L(r) > r), or regularity (L(r) < r).

Fig. 8. Results of Fry analysis for uranium deposits: (a) the spatial distribution of mineral deposits, (b) Fry plot, (c) the rose diagram of all pairs of Fry points, and (d)
the rose diagram of pairs of Fry points< 8 km.

Fig. 9. Plot of L(r) versus r for fault intersections.
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4.3. Fry analysis

Fry analysis (Fry, 1979) is a geometrical method involving spatial
autocorrelation analysis for points. Fry method, which plots transla-
tions of a set of points, can be performed by the following procedures
(Vearncombe & Vearncombe, 1999; Carranza, 2009; Zuo et al., 2009b;
Parsa and Maghsoudi, 2018). First, a map of points is marked with a
series of parallel reference lines. Then in a second empty map, the in-
tersection of an N-S line and an E-W trending line can be taken as the
origin, which is then placed on top of one of the points. In this step, it is
necessary to ensure that the reference lines for the same direction are
kept parallel and that the positions of all the points are recorded in the
second map. The procedure continues until all the points have been
used as the origin on the overlay map. Fry plots can be used for visual
interpretation for providing insight into which geological features are
plausible geological controls (Vearncombe & Vearncombe, 1999;
Kreuzer et al., 2007; Carranza, 2009; Zuo et al., 2009b).

4.4. Artificial neural network

The ANNs are reliable pattern-recognition and classification tools
that can be generalized from imprecise input data (Bonham-Carter,
1994; Müller et al., 1995). The ANNs have two major components in-
cluding neurons and connections, which are a set of weighted inter-
connections among processing units (Huang and Williamson, 1996;
Leite et al., 2009). The back-propagation ANN (BP-ANN) contains for-
ward and backward computation processes and comprises of input,

output and at least one hidden layer. The neurons of the hidden and
output layers process their inputs, sum the product(s), and then process
the sum(s) using a log-sigmoid transfer function. The learning algo-
rithm can automatically minimize the error by tuning a corresponding
weight to generalize and predicts outputs from the inputs (Thompson
et al., 2001).

4.5. Dataset

The datasets, consisting of geological and airborne radioactive
survey data in this study, were obtained from the 294th Geological
Party of Fujian Nuclear Industry of China. The geological dataset con-
tains a 1:100,000 geological map including volcanic rock formations,
intrusive rocks, faults, and mineral occurrences. The airborne radio-
active survey data contain anomaly maps of K, Th, γ, and U.

5. Results

5.1. Spatial pattern analysis of uranium deposits

Plots of r versus L(r) (Fig. 6) indicate that 46 known uranium de-
posits are clustered because of the L(r) values being greater than those
of the Poisson patterns (LPois(r)). The Ld value, representing the differ-
ence between L(r) and LPois(r), is used to indicate the degree of clus-
tering. Uranium deposits acquired the highest degree of clustering
(Ld= 4.8) when r was 5 km. Fractal plots indicate that the spatial
patterns of the deposits appear to be bifractal with two box-counting
fractal dimensions (Db) (Db= 0.18, r < 8 km; Db= 0.91, r > 8 km,
referring to the local dimension and regional dimension, respectively)
(Fig. 7a), andl two radial-density fractal dimensions (Dr) (Dr = 0.10,
r < 8 km; Dr = 1.10, r > 8 km))(Fig. 7b). Fry plots were constructed
with all pairs of Fry points and with pairs of Fry points within 8 km by
using the freeware DotProc package (Fig. 8). The results clearly de-
monstrate a dominant regional NE orientation (Fig. 8c). The rose dia-
gram of pairs of Fry points within 8 km shows a subsidiary NW or-
ientation (Fig. 8d).

5.2. Spatial pattern analysis of intersections of faults

The 326 intersections were derived from the fault map. Plots of r
versus L(r) indicate that the intersections are clustered (Fig. 9). The Ld
value shows that the highest degree of clustering occurs at r=5 km
(Ld= 2.5). Fractal analysis demonstrates bifractal distributions ac-
cording to log–log plots (Fig. 10). Box-counting fractal dimensions (Db)
are 0.49 (r < 5 km) and 0.32 (r > 5 km); and radial-density fractal
dimensions (Dr) are 0.12 (δ < 5 km) and 1.18 (δ > 5 km). Fry plots,
constructed with all pairs of Fry points and with pairs of Fry points
within 5 km, present a dominant regional NE orientation and prospect-
scale NW- and NE-trending faults similar to the mineral occurrence
(Fig. 11).

5.3. Fractal dimensions of lineament structures

Fractal dimensions of the lineament structures (faults and litholo-
gical boundaries) were calculated on a 2 km grid of cells of the entire
study area (considering the map scale and the distribution of the
structures). The spatial resolutions were 1000, 500, 400, and 200m,
respectively. The parameters such as frequency (Lf), lengths (Ll) and
number of intersection (Li) of lineament structures were also obtained
by statistical methods, which exhibited positive correlations with
fractal dimension (Table 2). Accordingly, fractal dimension can be used
as an index to define the complexity of lineaments, as well as the
density and interconnectivity of fluid pathways to some extent. Fig. 12
exhibits the maps of the fractal dimensions achieved by interpolation.
The highest areas are spatially associated with the faults and litholo-
gical contacts that have developed well in the volcanic rocks.

Fig. 10. Log-log plots of (a) box size versus counts, and (b) distance versus
density of fault intersections.
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6. Discussions

6.1. Complexity of spatial distribution of structures and locations of
uranium deposits

Previous studies and the conceptual genetic model of uranium mi-
neral systems have shown that the uranium deposits are structurally
controlled in this district (Huang, 2010; Li et al., 2012; Zhou, 2012).
The faults, lithological interfaces of strata, and volcanic structures are
the dominant permeable fluid pathways that control the location of
deposits in uranium mineral systems. These structures can provide the
pathways for this focused fluid flow on one hand, and create contrasts
in physico-chemical conditions by juxtaposing different rock types on
the other (Hodkiewiczi et al., 2005; Ford and Blenkinsop, 2008). Fig. 12
demonstrates that the fractal dimension of lineaments was determined
to indicate the possibility of a correlation between the complexity and
the size of deposits. Clearly, the highest areas are spatially coincident

with the spatial distribution of ore occurrences. The high-tonnage de-
posits, such as the Quezishan, Maoyantou, and Shiyuanlong deposits,
also exhibit a high correlation with geological complexity. Further-
more, in order to examine this relationship spatially, the correlations
between fractal dimensions, and ore occurrences and tonnages, are
shown in Fig. 13. The positive correlations reflect that areas of greater
complexity have the potential to be richer in ores. This may be attrib-
uted to the fact that hydrothermal mineral systems often develop into
structures having sufficient connectivity to create fluid-pathway net-
works. The latter links fluid sources and favors the formation of ore
deposits (Cox et al., 2001; Hodkiewiczi et al., 2005). Higher complexity
of the surface structures indicates well-connected and high-perme-
ability fracture networks at depth. These networks act as pathways to
focus hydrothermal fluids to form ores (Hodkiewiczi et al., 2005; Zhao
et al., 2011). Greater complexity, characterized by larger fractal di-
mensions, implies the potential zones where large tonnage deposits may
have formed.

6.2. Spatial association of uranium deposits with faults

The results obtained by Fry, fractal, and L function analyses are
presented in Table 3. The results of the two fractal analysis methods for
uranium deposits are similar in separating the straight lines fitted
through log-log plots at an 8 km scale. This implies that certain types of
geological control on the clustering of uranium occurrences might be

Fig. 11. Fry analysis for fault intersections:(a) the original points, (b) the Fry plot, (c) the rose diagram of all pairs of Fry points, and (d) the rose diagram of pairs of
Fry points< 5 km.

Table 2
Coefficient matrix of length, intersection, frequency and dimension.

length Intersection Dimension

Frequency 0.52 0.61 0.63
Length 0.32 0.59
Intersection 0.44
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carried out through regional- and prospect-scale processes that plau-
sibly controlled their formation. Carlson (1991), Carranza (2009) and
Zuo et al. (2009b) proposed that the first range might represent the
extent of a hydrothermal mineralization system; and the second range

represented the influence distance for regional geological background.
These interpretations were further investigated by the application of
Fry analysis. The rose diagrams of Fry analysis suggest a major 30°–60°
orientation with all pairs of Fry points and two dominant 30°–60° and
290°–310° orientations with pairs of Fry points within 8 km, respec-
tively. These results of the Fry analysis not only cohere with those of
fractal analysis, but also indicate a spatial and possible genetic link
between the location of uranium deposits and regional-scale NE-, pro-
spect-scale NE-, and NW-striking faults. Fry plots of uranium occur-
rences constrained by ore tonnage (T) further provide insights into
structural controls on uranium deposits (Fig. 14). They suggest a major
NE–striking orientation and two dominant NE– and NW–striking or-
ientations within 10 km for larger deposits (T > 10 t), and NE–striking
orientation and three dominant NE–, NEE–, and NW–striking orienta-
tions within 10 km for smaller deposits (T < 10 t). Such results coin-
cide well with the results from the study of Zhou (2012) and Lou
(2013), which concluded that the faults, such as regional NE–striking
Chong’an-Shicheng, Pucheng–Wuping fault zones (Fig. 1), NE–striking
F14, F30 faults, and NW–striking F1, F3, F18 in Quezishan deposit
(Fig. 3), are likely to have controlled the uranium mineralization in the
Pucheng district.

The intersections of faults were also used to form an important set of
points in order to analyze the structural controls; indeed, the areas
surrounding the fault intersections with higher permeability can be
appropriate for the penetration of ore-forming fluids that subsequently
lead to mineralization (Zhao et al., 2015). Table 3 presents that the
similarities between the spatial distribution of mineral occurrences and
the intersections of faults were also observed (Table 3). Results of the
two fractal analysis methods are similar in separating the straight lines
at 5 km compared to that at 8 km for mineral occurrences. The local box
dimension of intersections is larger than ore occurrences. These r-
esults may be attributed to the higher intensity of intersections. Zuo
et al. (2009b) illustrated the fractal dimension to be a function of in-
tensity and probability of distance, and a higher intensity point pattern
generally has a larger box dimension. Fry analysis also showed the
regularity similar to ore occurrences, displaying regional- and prospect-
scale controls on the distribution of intersections. Quantification of the
spatial association of NE-, NW-, E-W-, and N-S-striking faults (Fig. 3), as
well as intersections of faults with uranium deposits further support the
preceding idea (Fig. 15). The results clearly indicate that the ore-
bearing fluids might have been dominantly transported through NE-,
and NW-trending fault pathways. The intersections of faults with lager
permeability and connectivity promote the migration and focusing of
ore-bearing fluid; which consequently leads to the formation of ore
deposits.

6.3. Lithological controls on uranium mineralization

Most of the uranium mineralization in Pucheng district originated
from volcanic rocks of the Later Jurassic Nanyuan Formation, while
some originated from both volcanic and intrusive rocks (Zhou 2010; Li
et al., 2012). The conceptual genetic model indicates that the volcanic
and intrusive rocks constitute significant metal resources for forming an
economic uranium deposit. Fig. 16 shows the significance of spatial
association between these rock units and uranium mineralization,
characterized by the number of ore deposits, and uranium content. The
results revealed the existence of strong positive spatial associations
between the Nanyuan formation and granite with uranium occurrences.
Therefore, these rock units might be the plausible lithological control
concerning uranium mineralization.

6.4. Mapping uranium prospectivity

MPM involves geological/geochemical/geophysical features asso-
ciated with the targeted mineral deposits. These features, termed as
exploration criteria, are spatial signatures of critical processes in the

Fig. 12. Maps showing the fractal dimension of faults and lithological bound-
aries.

Fig. 13. Plots of the fractal dimensions versus (a) density of mineral deposits,
and (b) density of ore reserve.
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mineral systems (McCuaig et al., 2010; Fallon et al., 2010). In uranium
mineral system, three groups of factors are considered to be essential,
which are uranium source, pathway of ore-forming fluids, and favor-
able physico–chemical conditions for uranium deposition and pre-
servation (Xiao and Wang, 1998; Kreuzer et al., 2010; Nash, 2010;
Porwal et al., 2015; Hou et al., 2017). The exploration criteria can be
inferred from various geoscience datasets to extract criteria in the form
of evidential layers. Based on the preceding analysis of the conceptual
genetic model and controls on the uranium mineralization, nine ex-
ploration targeting criteria (L1~ L9) for volcanic-type uranium systems
that can be mapped in the available data sets, were summarized for
integrated prospectivity modeling (Table 4). These criteria included the
Nanyuan Formation, granite, fractal dimension anomaly (> 1.15), NE-
and NW-striking faults, intersections of faults, calderas airborne
radioactive uranium (U) anomaly (> 6 ppm), and airborne radioactive
gamma (γ) anomaly (> 3.1 nc/kg.h). The buffer radii of 1.0, 1.2, 2.0
and 5 km were considered according to the areas containing approxi-
mately 75% of known deposits. Airborne radioactive U and γanomalies

are important geophysical exploration criteria in uranium mineral ex-
ploration, providing results about the uranium deposition and pre-
servation (Nash, 2010). The anomaly maps clearly indicated that the
anomalies are mainly concentrated in the north and the west parts,
which coincide with the distribution of uranium-rich volcanic rocks
(Fig. 17). The thresholds were selected according to the background
values in this area (Zhou, 2012).

The unit cell size for GIS-based prospectivity analysis depends on
the size of the deposits and the geological data input (Hengl, 2006). In
this study, 2 km×2 km unit cells were used in the predictive modeling.
These cells were objectively determined based on the spatial pattern of
the known uranium deposits, so that they were suitable to the scale of
the analysis, and that only one occurrence was present in any given cell
(Carranza and Laborte, 2015). Then, the BP-ANN method was used to
create probability maps for uranium occurrences, which involves the
following procedures (Zhao et al., 2016):

(1) Training and validation set construction. The training and

Table 3
Comparison of the uranium deposits and intersections of faults by Fry analysis, fractal analysis and L function.

Method Uranium deposits (No.46) Intersections of faults (No.326)

L-function L(r) > Lpois(r), clustering L(r) > Lpois(r), clustering
highest Ld value= 5 km(r=5km) highest Ld value= 2.5 km(r=5 km)

Fractal analysis Db= 0.18(r < 8 km); Db= 0.91(r > 8 km) Db= 0.49(r < 5 km); Db= 0.32(r > 5 km)
Dr= 0.10(δ < 8 km) ; Dr= 1.10(δ > 8 km). Dr= 0.12(δ < 5 km) ; Dr= 1.18(δ > 5 km).

Fry analysis prospect-scale controls: dominate NE-trending faults, subsidiary NW-trending faults prospect-scale controls: dominate NE- and NW-trending faults
regional-scale controls: dominate NE-trending faults regional-scale controls: dominate NE-trending faults

Fig. 14. Fry plots of uranium deposits constrained by ore tonnage. (a) and (b) represent the rose diagram of all pairs of Fry points and pairs of Fry points within 10 km
for the larger deposits (> 10 t); (c) and (d) represent the rose diagram of all pairs of Fry points and pairs of Fry points within 10 km for the smaller deposits (< 10 t).
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validation patterns including both positive (presence) and negative
(absence) patterns were created. The 46 known mineral deposits
units were randomly split between training/validation (70/30). An
equal number of none-deposit units were randomly selected for
training and validation units. None-deposit units should be far from
the deposit locations with the objective of having their geological
characteristics different from those of the deposits (Parsa et al.,
2018). In this research, the none-deposit units were selected in the
area where the distances from known deposit were greater than
5 km, as a result of the L-function results of uranium deposit. The
locations of the selected training units, validation units for the ANN

Fig. 15. Plot of distances versus uranium deposits for different fault groups.

Fig. 16. Plot of rock units versus uranium deposit and content.

Table 4
. The exploration targeting criteria for volcanic-type uranium systems.

Targeting criteria Evidence layer Description Buffer (km) AUC

Sources Uranium-rich strata (L1) Presence of or proximity to the Nanyuan Fm. 0.824
Uranium-rich intrusion (L2) Presence of or proximity to the granite 0.525

Pathways NE-striking faults (L3) Presence of the buffering zones of NE-striking faults 1 0.766
NW-striking faults (L4) Presence of the buffering zones of NW-striking faults 1.2 0.712
Intersections of faults (L5) Presence of the buffering zones of intersections 2 0.669

Traps Volcanic environments (L6) Presence of the buffering zones of calderas 5 0.663
Lineament complexity (L7) Presence of fractal dimension anomaly (D > 1.15) 0.796

Deposition Airborne radioactive gamma (γ) anomaly (L8) Presence of γ anomaly((> 3.1 nc/kg.h)) 0.742
Airborne radioactive uranium (U) anomaly (L9) Presence of U anomaly(> 6 ppm) 0.630

Fig. 17. Maps showing (a) airborne radioactive U and (b) airborne radioactive
gamma.
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are shown in Fig. 18.
(2) The BP-ANN model implementation. Nine variables were used as

inputs, and all input variables were transformed into [0, 1] by
normalization. The number of the hidden neurons (Nhid) was de-
termined by using an empirical formula expressed as =N mnhid ,
where m and n represent the input and output neurons, respectively
(Shen et al., 2008). Then, one hidden layer with six neurons was
used for training. The number of inputted neurons corresponded to
the nine evidential layers. The output layer considered the sizes of
the uranium deposits, which were assigned as 1 (reserve > 50 t),
0.75 (50 t > reserve > 10 t), 0.5 (10 t > reserve > 5 t), 0.25
(5 t > reserve > 0 t), and 0 (no deposit found). The activation
function was considered to be the logistic function; the learning rate
was set to 0.7. The training error curve converged after 277 epochs
from an initial square error of 0.072 (Fig. 19). This ensured that the
model fits the training data, which is essential in predictive map-
ping. Finally, combined with the architecture and the saved
weights, the BP-ANN model was used to predict the validation
units. The results showed that more than 91.3% of total validation

units agreed well with the expected value, thus indicating a good
classification.

(3) The BP-ANN model prediction. The training and classification were
carried out for the remaining prediction units. The output unit
generated a value within the range of 0–1; and this could be in-
terpreted as the probability of the presence of uranium at a given
location. The probability values of the newly classified feature
vectors leaning toward 1 indicated a higher possibility of the pre-
sence of minerals in that region. Finally, a potential map was
generated by presenting the trained ANN model with an input
pattern set (Fig. 20).

(4) Performance test for ANN model. In order to test the performance of
the ANN model, the ROC curve was addressed. The results of the
ROC analysis, according to different probability threshold values of
mineral prospectivity, are shown in Fig. 21. The AUC of the BP-ANN
was 0.94, which shows that the ANN model is capable of pro-
spectivity mapping for uranium minerals.

Fig. 18. Locations of the selected training and validation units for the ANN.
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6.5. Implications for uranium exploration

Owing to the complexity and fuzzy nature of metallogenic systems
and ore-forming processes, the relationship between exploration cri-
teria and certain types of mineral deposits seems to be far too complex
to be modeled adequately by using linear approximations in MPM.
Compared to other data-driven approaches (e.g. regression ap-
proaches), the application of neural networks provides a robust non-
linear alternative to linear approaches for MPM (Porwal et al., 2003b).

Accordingly, ANN model can be successfully applied for providing a
quantitative measure of the weights among the factors for uranium
prospects, because the deposit is usually controlled by a variety of
geological features with non-linear relationship. However, there will
always be uncertainties in mineral prospectivity model. To reduce these
uncertainties, one of the most important procedures involves the se-
lection of appropriate training points. Some criteria have been proposed
to define the point locations as follows: (1) deposit vectors and non-
deposit vectors should be represented in the same proportion in the set
of training vectors; (2) non-deposit vectors should be far from the de-
posit vectors; and (3) non-deposit vectors should be chaotically dis-
tributed (Porwal et al., 2003b; Carranza and Laborte, 2015; Parsa et al.,
2018). Exploring significant targeting criteria is also essential to reduce
the uncertainties (Carranza et al., 2008). Analysis of the spatial dis-
tribution of known mineral deposits associated with evidential features
is beneficial to develop calibrated exploration criteria (Kreuzer et al.,
2007; Parsa et al., 2018). Table 4 lists the AUC values for each selected
evidential layer, which indicate that the exploration criteria were eli-
cited for vectoring toward uranium mineralized zones because of the
AUC values being greater than 0.5. The most important criteria are the
Nanyuan Formation, followed by fractal dimension anomaly, NE-
striking fault and airborne radioactive gamma anomaly. However,
owing to the absence of certain exploration evidence data, such as
hydrothermal alteration, U/Th variation and F anomaly deemed im-
portant in the formation of a volcanogenic uranium deposit (Nash,
2010), the exploration criteria can be further facilitated using supple-
mental data sets to perfect this prospectivity model. The probability
map shows that the high-value areas were consistent with the spatial
distribution of ore deposits. Most of the known ore deposits were found
to fall in the region of probability having output values greater than
0.20. As a result, most known occurrences were detected, and some
unknown areas were clearly delineated by the model, indicating

Fig. 19. The evolution of the squared error curve for the supervising data when
training the BP-ANN.

Fig. 20. The probability map obtained by the ANN.
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additional potential targets for further exploration. Initial results of this
study demonstrate that the ANNs can be effectively used as efficient
tools for uranium potential mapping.

7. Conclusions

In this study, various spatial analyses and the ANN model were
applied to explore the spatial correlations and map mineral pro-
spectivity for uranium mineralization in Pucheng district, NW Fujian
Province, China. The following conclusions were obtained. First, the
geological complexity determined by frequency, lengths, the intersec-
tion of structures, and fractal dimension by means of box-counting can
be used as indexes to characterize the complexity of the spatial dis-
tribution of structures. Greater complexity favors uranium deposition,
because the more complex structural arrays may have been the ones
that captured and focused fluid flow and chemical and physical inter-
actions between the uranium-bearing fluids and their host rocks.
Second, the spatial patterns of known mineral occurrences were re-
vealed by L function, fractal analysis, and Fry analysis. The results in-
dicate that the ore-bearing fluids might have been transported through
the regional-scale NE-, prospect-scale NE- and NW-striking fault path-
ways. The results are helpful for understanding the mineralization-
controlling processes and for weighting the relative importance of
geological features on the control of mineral deposit. Finally, the mi-
neral prospectivity maps, generated by the ANN data-driven method,
show highly predicted accuracy, indicating the effectiveness of pro-
spectivity mapping of uranium minerals. These predictive maps can
provide useful information for further explorations on uranium deposits
in Pucheng district.

Acknowledgements

This research was jointly supported by the National Key R&D
Program of China (Grant Nos. 2016YFC0600509 & 2017YFC0601504)
and the National Natural Science Foundation of China (Grant No.
41302264). The authors especially thank Dr. Oliver Kreuzer for helpful
comments on the paper.

References

Agterberg, F.P., Bonham-Carter, G.F., Wright, D.F., 1990. Statistical pattern integration
for mineral exploration. In: Daniel, F.Ga.M. (Ed.), GaalComputer Applications in
Resource Estimation Prediction and Assessment for Metals and Petroleum. Pergamon
Press, Oxford, New York, pp. 1–21.

Asadi, H.H., Sansoleimani, A., Fatehi, M., Carranza, E.J.M., 2016. An AHP–TOPSIS pre-
dictive model for district-scale mapping of porphyry Cu–Au potential: a case study
from Salafchegan area (Central Iran). Nat. Resour. Res. 25, 1–13.

Baddeley, A., Turner, R., 2005. Spatstat: an R package for analyzing spatial point patterns.

J. Stat. Softw. 12, 1–42.
BGMRFJ (Bureau of Geology and Mineral Resources of Fujian Province), 1985. In:

Regional geology of Fujian Province. Geological Publishing House, Beijing, pp. 7–564
(in Chinese).

Blenkinsop, T.G., Sanderson, D.J., 1999. Are gold deposits in the crust fractals? A study of
gold mines in the Zimbabwean craton. In: McCaffrey, K.J.W., Lonergan, L.,
Wilkinson, J.J. (Eds.), Fractures, Fluid Flow and Mineralization. Geological Society of
London Special Publication, pp. 141–151.

Bonham-Carter, G.F., 1994. Geographic Information Systems for Geoscientists: Modeling
with GIS, Computer Methods in the Geosciences 13. Pergamon Press, Oxford, pp. 398.

Bonham-Carter, G.F., Agterberg, F.P., Wright, D.F., 1989. Weights-of-evidence modeling:
a new approach to mapping mineral potential. In: Agterberg, F.P., Bonham-Carter,
G.F. (Eds.), Statistical Applications in the Earth Sciences. Geological Survey of
Canada, pp. 171–183.

Brown, W.M., Gedeon, T.D., Groves, D.I., Barnes, R.G., 2000. Artificial neural networks: a
new method for mineral prospectivity mapping. Aust. J. Earth Sci. 47, 757–770.

Cai, Y., Zhang, J., Li, Z., Guo, Q., Song, J., Fan, H., Liu, W., Qi, F., Zhang, M., 2015.
Summary of characteristics of uranium resources and metallogenic regularities in
China. Acta Geol. Sin. 89, 1051–1069 (in Chinese with English abstract).

Carlson, C.A., 1991. Spatial distribution of ore deposits. Geology 19, 111–114.
Carranza, E.J.M., 2004. Weights of evidence modeling of mineral potential: a case study

using small number of prospects, Abra, Philippines. Nat. Resour. Res. 13, 173–187.
Carranza, E.J.M., 2009. Controls on mineral deposit occurrence inferred from analysis of

their spatial pattern and spatial association with geological features. Ore Geol. Rev.
35, 383–400.

Carranza, E.J.M., 2011. From predictive mapping of mineral prospectively to quantitative
estimation of number of undiscovered prospects. Resour. Geol. 61, 30–51.

Carranza, E.J.M., Laborte, A.G., 2015. Data-driven predictive mapping of gold pro-
spectivity, Baguio district, Philippines: application of Random Forests algorithm. Ore
Geol. Rev. 71, 777–787.

Carranza, E.J.M., Sadeghi, M., 2010. Predictive mapping of prospectivity and quantitative
estimation of undiscovered VMS deposits in Skellefte district (Sweden). Ore Geol.
Rev. 38, 219–241.

Carranza, E.J.M., Woldai, T., Chikambwe, E.M., 2005. Application of data-driven evi-
dential belief functions to prospectivity mapping for aquamarine-bearing pegmatites,
Lundazi district, Zambia. Nat. Resour. Res. 14, 47–63.

Carranza, E.J.M., Hale, M., Faassen, C., 2008. Selection of coherent deposit-type locations
and their application in data-driven mineral prospectivity mapping. Ore Geol. Rev.
33, 536–558.

Carranza, E.J.M., Owusu, E., Hale, M., 2009. Mapping of prospectivity and estimation of
number of undiscovered prospects for Lode-gold, southwestern Ashanti Belt, Ghana.
Miner. Deposita 44, 915–938.

Chen, D., 1997. Ore-controlling factors and genesis of Maoyangtou volcanic U (Ag, Mo)
deposit. Miner. Deposits 16, 44–55 (in Chinese with English abstract).

Chen, D., Zhang, B., Chen, P., 1995. Characteristics of major ore minerals in 570 deposit.
Acta Mineral. Sin. 15, 271–275 (in Chinese with English abstract).

Chen, D., Sun, D., Zhang, B., 1997. Isotope geochemistry of Maoyangtou uranium (silver
& molybdenum) deposit. Geochemistry 26, 29–37 (in Chinese with English abstract).

Cheng, Q., Agterberg, F.P., 1999. Fuzzy weights of evidence method and its application in
mineral potential mapping. Nat. Resour. Res. 8, 27–35.

Cox, S.F., Knackstedt, M.A., Braun, J., 2001. Principles of structural control on perme-
ability and fluid flow in hydrothermal systems. Structural Controls on Ore Genesis.
Rev. Econ. Geol. 14, 1–14.

Diggle, P.J., 1983. Statistical Analysis of Spatial Point Patterns. Academic Press, London,
pp. 148.

Du, X., Zhou, K., Cui, Y., Yao, C., Wang, N., Zhang, W., 2016. Application of fuzzy ana-
lytical herarchy process (AHP) and prediction-area (P-A) plot for mineral pro-
spectivity mapping: a case study from the Dananhu metallogenic belt, Xinjiang, NW
China. Arab. J. Geosci. 9, 298.

Fallon, M., Porwal, A., Guj, P., 2010. Prospectivity analysis of the plutonic Marymia
greenstone belt, Western Australia. Ore Geol. Rev. 38, 208–218.

Finch, W.I., Feng, S., Zuyi, C., Mccammon, R.B., 1993. Descriptive models of major ur-
anium deposits in China. Nonrenew. Resour. 2, 39–48.

Ford, A., Blenkinsop, T.G., 2008. Evaluating geological complexity and complexity gra-
dients as controls on copper mineralization, Mt Isa Inlier. Aust. J. Earth Sci. 55,
13–23.

Ford, A., Miller, J.M., Mol, A.G., 2016. A comparative analysis of weights of evidence,
evidential belief functions, and fuzzy logic for mineral potential mapping using in-
complete data at the scale of investigation. Nat. Resour. Res. 25, 19–33.

Fry, N., 1979. Random point distributions and strain measurement in rocks.
Tectonophysics 60, 89–105.

Fu, J., Zhao, N., Pei, C., Li, X., 2015. Characteristics of indicator elements combination
and genesis of four types of uranium mineralization in China. Geophys. Geochem.
Explor. 39, 217–221 (in Chinese with English abstract).

Harris, J.R., Grunsky, E., Behnia, P., Corrigan, D., 2015. Data-and knowledge-driven
mineral prospectivity maps for Canada's North. Ore Geol. Rev. 71, 788–803.

Hengl, T., 2006. Finding the right pixel size. Comput. Geosci. 32, 1283–1298.
Hodkiewiczi, P.F., Weinberg, R.F., Gardoll, S.J., Groves, D.I., 2005. Complexity gradients

in the Yilgarn Craton: fundamental controls on crustal-scale fluid flow and the for-
mation of world-class orogenic-gold deposits. Aust. J. Earth Sci. 52, 831–841.

Hou, B., Keeling, J., Li, Z., 2017. Paleovalley-related uranium deposits in Australia and
China: a review of geological and exploration models and methods. Ore Geol. Rev.
88, 201–234.

Huang, Y., 2010. Mineralization of Xiandian-Pucheng thrust belt in Wuyishan, Fujian.
Fujian Geol. 29, 217–223 (in Chinese with English abstract).

Huang, Z., Williamson, A., 1996. Artificial neural network modeling as an aid to source

Fig. 21. The ROC curves.

J. Zhao, et al. Ore Geology Reviews 112 (2019) 103028

15

http://refhub.elsevier.com/S0169-1368(18)30743-1/h0005
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0005
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0005
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0005
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0010
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0010
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0010
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0015
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0015
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0020
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0020
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0020
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0025
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0025
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0025
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0025
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0030
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0030
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0035
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0035
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0035
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0035
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0040
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0040
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0045
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0045
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0045
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0050
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0055
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0055
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0060
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0060
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0060
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0065
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0065
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0070
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0070
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0070
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0075
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0075
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0075
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0080
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0080
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0080
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0085
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0085
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0085
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0090
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0090
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0090
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0095
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0095
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0100
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0100
http://refhub.elsevier.com/S0169-1368(18)30743-1/h10000
http://refhub.elsevier.com/S0169-1368(18)30743-1/h10000
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0105
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0105
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0110
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0110
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0110
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0115
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0115
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0120
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0120
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0120
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0120
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0125
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0125
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0130
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0130
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0135
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0135
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0135
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0140
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0140
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0140
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0145
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0145
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0150
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0150
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0150
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0155
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0155
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0160
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0165
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0165
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0165
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0170
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0170
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0170
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0175
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0175
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0180


rock characterization. Mar. Pet. Geol. 13, 277–290.
Kreuzer, O.P., Blenkinsop, T.G., Morrison, R.J., Peters, S.G., 2007. Ore controls in the

Charters Towers goldfield, NE Australia: constraints from geological, geophysical and
numerical analyses. Ore Geol. Rev. 32, 37–80.

Kreuzer, O.P., Markwitz, V., Porwal, A.K., McCuaig, T.C., 2010. A continent-wide study of
Australia's uranium potential. Ore Geol. Rev. 38, 334–366.

Leite, E.P., de Souza, Filho, Roberto, Carlos, 2009. Artificial neural networks applied to
mineral potential mapping for copper-gold mineralizations in the Carajás Mineral
Province, Brazil. Geophys. Prospect. 57, 1049–1065.

Leroy, J.L., George-Aniel, B., 1992. Volcanism and uranium mineralizations: the concept
of source rock and concentration mechanism. J. Volcanol. Geoth. Res. 50, 247–272.

Li, W., Liu, R., Fang, X., Zhang, W., 2012. Relationship between the genesis of uranium
deposits and the fault structures in Chong’an district. Uranium Geol. 28, 215–221 (in
Chinese with English abstract).

Lisitsin, V.A., Porwal, A., Mccuaig, T.C., 2014. Probabilistic Fuzzy Logic Modeling:
quantifying uncertainty of mineral prospectivity models using Monte Carlo simula-
tions. Math. Geosci. 46, 747–769.

Liu, R., Zhou, H., Zhang, L., Zhong, Z., Zeng, W., Xia, H., Jin, S., Lu, X., Li, C., 2010.
Zircon U-Pb ages and Hf isotope compositions of the Mayuan migmatite complex, NW
Fujian Province, Southeast China: constraints on the timing and nature of a regional
tectonothermal event associated with the Caledonian orogeny. Lithos 119, 163–180.

Lou, Z., 2013. Geological characteristics and metallogenic prospects of the Quezishan
uranium deposit in Wuyishan, Fujian Province. J. East China Univ. Technol. 36,
265–273 (in Chinese with English abstract).

Lu, W., Wang, Y., 1990. Isotope geochemistry of 570 uranium deposit, Fujian. J. Chengdu
Univ. Technol. 17, 85–93 (in Chinese with English abstract).

Lu, W., Yang, S., Zhang, P., Wang, Y., 1997. Isotope geological characteristics of uranium
deposits in Shiyuanlong area. J. Mineral. Petrol. 17, 69–76 (in Chinese with English
abstract).

Maithani, P.B., Srinivasan, S., 2011. Felsic volcanic rocks, a potential source of uranium-
an Indian overview. Energy Procedia 7, 163–168.

Mandelbrot, B.B., 1983. The Fractal Geometry of Nature. Freeman, New York, pp. 495.
McCuaig, T.C., Beresford, S., Hronsky, J., 2010. Translating the mineral systems approach

into an effective exploration targeting system. Ore Geol. Rev. 38, 128–138.
Müller, B., Reinhardt, J., Strickland, M.T., 1995. Neural Networks: An Introduction,

second ed. Springer-Verlag, New York.
Nash, J. Thomas, 2010. Volcanogenic uranium deposits—Geology, geochemical pro-

cesses, and criteria for resource assessment: U.S. Geological Survey Open-File Report
2010-1001, 99 p.

Nie, G., Yin, L., Wang, X., Liu, L., 1994. Formation conditions and tectonic environment of
mesozoic uranium and polymetallic deposits in Pucheng, Fujian Province. J. East
China Univ. Technol. 2, 106–116 (in Chinese with English abstract).

Oh, H., Lee, S., 2010. Application of artificial neural network for gold-silver deposits
potential mapping: a case study of Korea. Nat. Resour. Res. 19, 103–124.

Parsa, M., Maghsoudi, A., 2018. Controls on Mississippi valley-type Zn-Pb mineralization
in Behabad district, central Iran: constraints from spatial and numerical analyses. J.
Afr. Earth Sci. 140, 189–198.

Parsa, M., Maghsoudi, A., Yousefi, M., 2018. Spatial analyses of exploration evidence data
to model skarn-type copper prospectivity in the Varzaghan district, NW Iran. Ore
Geol. Rev. 92, 97–112.

Pérez-López, R., Paredes, C., Muñoz-Martín, 2005. Relationship between the fractal di-
mension anisotropy of the spatial faults distribution and the paleostress fields on a
Variscan granitic massif (Central Spain): the F-parameter. J. Struct. Geol. 27,
663–677.

Porwal, A., Carranza, E.J.M., Hale, M., 2003a. Knowledge-driven and data-driven fuzzy
models for predictive mineral potential mapping. Nat. Resour. Res. 12, 1–25.

Porwal, A., Carranza, E.J.M., Hale, M., 2003b. Artificial neural networks for mineral
potential mapping. Nat. Resour. Res. 12, 155–171.

Porwal, A., Das, R.D., Chaudhary, B., Gonzalez-Alvarez, I., Kreuzer, O., 2015. Fuzzy in-
ference systems for prospectivity modeling of mineral systems and a case-study for
prospectivity mapping of surficial Uranium in Yeelirrie Area, Western Australia. Ore
Geol. Rev. 71, 839–852.

Porwal, A.K., Kreuzer, O.P., 2010. Introduction to the special issue: mineral prospectivity
analysis and quantitative resource estimation. Ore Geol. Rev. 38, 121–127.

Raines, G.L., 2008. Are fractal dimensions of the spatial distribution of mineral deposits
meaningful? Nature Resour. Res. 17, 87–97.

Ripley, B., 1977. Modelling spatial patterns (with discussion). J. Roy. Stat. Soc. B 39,
172–212.

Shen, H., Wang, Z., Gao, C., Qin, Juan., Yao, F., X, W., 2008. BP neural network hidden
layer unit number determination. Journal of Tianjin University of Technology 24,
13–15 (in Chinese with English abstract).

Thompson, S., Fueten, F., Bockus, D., 2001. Mineral identification using artificial neural
networks and the rotating polarizer stage. Comput. Geosci. 27, 1081–1089.

Turcotte, D.L., 1992. Fractals and Chaos in Geology and Geophysics. Cambridge
University Press, Cambridge, pp. 412.

Vearncombe, J., Vearncombe, S., 1999. The spatial distribution of mineralization: ap-
plications of Fry analysis. Econ. Geol. 94, 475–486.

Velde, B., Dubois, J., Touchard, G., Badri, A., 1990. Fractal analysis of fractures in rocks:
the Cantor’s Dust. Tectonophysics 179, 345–352.

Walsh, J.J., Watterson, J., 1993. Fractal analysis of fracture patterns using the standard
box-counting technique: valid and invalid methodologies. J. Struct. Geol. 15,
1509–1512.

Wang, Y., Li, W., Zheng, S., Yang, Y., Huang, Z., 1990. Controlling factors and ore forming
conditions of 570 ore deposit. Uranium Geol. 6, 1–10 (in Chinese with English ab-
stract).

Wang, C., Rao, J., Chen, J., Ouyang, Y., Qi, S., Li, Q., 2017. Prospectivity mapping for
“Zhuxi-type” copper-tungsten polymetallic deposits in the Jingdezhen region of
Jiangxi province, south China. Ore Geol. Rev. 89, 1–14.

Wang, Z., Zuo, R., Zhang, Z., 2015. Spatial analysis of Fe deposits in Fujian province,
China: implications for mineral exploration. J. Earth Sci. 26, 813–820.

Wei, D., Jie, Y., Huang, T., 1997. Regional geological structural characteristics of Fujian
province. Regional Geol. China 2, 51–59 in Chinese with English abstract.

Wyborn, L.A.I., Heinrich, C.A., Jaques, A.L., 1994. Australian Proterozoic mineral sys-
tems: essential ingredients and mappable criteria. In: Australian Institute of Mining
and Metallurgy Annual Conference, Melbourne, Proceedings, pp. 109–115.

Xiao, B., Wang, Y., 1998. Prospects for volcanic-type uranium mineralization in Pucheng
area. J. East China Geol. Inst. 21, 15–20 (in Chinese with English abstract).

Yousefi, M., Carranza, E.J.M., 2017. Union score and fuzzy logic mineral prospectivity
mapping using discretized and continuous spatial evidence values. J. Afr. Earth Sci.
128, 47–60.

Yousefi, M., Nykänen, V., 2017. Introduction to the special issue: GIS-based mineral
potential targeting. J. Afr. Earth Sci. 128, 1–4.

Zhang, W., 1986. Geochemical characteristics of metamorphic volcanic rocks in north-
western Fujian. Fujian Geol. 5, 36–50 (in Chinese with English abstract).

Zhang, Q., Lin, Y., Xu, S., Chen, J., Du, J., Ge, R., 2008. A new view on division of terranes
and their tectonic evolution in Fujian province. Resour. Survey Environ. 29, 168–176
(in Chinese with English Abstract).

Zhang, Z., Zuo, R., Xiong, Y., 2016. A comparative study of fuzzy weights of evidence and
random forests for mapping mineral prospectivity for skarn-type Fe deposits in the
southwestern Fujian metallogenic belt, China. Sci. China Earth Sci. 59, 556–572.

Zhao, J., Chen, S., Zuo, R., Carranza, E.J.M., 2011. Mapping complexity of spatial dis-
tribution of faults using fractal and multifractal models: vectoring towards explora-
tion targets. Comput. Geosci. 37, 1958–1966.

Zhao, J., Zuo, R., Chen, S., Kreuzer, O.P., 2015. Application of the tectono-geochemistry
method to mineral prospectivity mapping: a case study of the Gaosong tin-poly-
metallic deposit, Gejiu district, SW China. Ore Geol. Rev. 71, 719–734.

Zhao, J., Chen, S., Zuo, R., 2016. Identifying geochemical anomalies associated with
Au–Cu mineralization using multifractal and artificial neural network models in the
Ningqiang district, Shaanxi, China. J. Geochem. Explor. 164, 54–64.

Zhao, K., Jiang, S., Chen, W., Chen, P., Ling, H., 2013. Zircon U-Pb chronology and
elemental and Sr–Nd–Hf isotope geochemistry of two Triassic A-type granites in
South China: implication for petrogenesis and Indosinian transtensional tectonism.
Lithos 160–161, 292–306.

Zhou, M., 2010. Geological characteristics and prospecting prospects of the Maoyangtou
uranium deposit in Pucheng, Fujian. Fujian Geol. 29, 8–16 (in Chinese with English
abstract).

Zhou, M., 2012. Ore-forming information extraction and mineralization quantitative
prediction for volcanic uranium deposits in Pucheng-Chongan district, Fujian
Provinces. Master dissertation unpublished, China University of Geosciences, Wuhan,
pp: 1-45 (in Chinese).

Zuo, R., 2016. A nonlinear controlling function of geological features on magmatic-hy-
drothermal mineralization. Sci. Rep. 6, 27127.

Zuo, R., Cheng, Q., Agterberg, F.P., 2009a. Application of a hybrid method combining
multilevel fuzzy comprehensive evaluation with asymmetric fuzzy relation analysis
to mapping prospectivity. Ore Geol. Rev. 2009, 101–108.

Zuo, R., Agterberg, F.P., Cheng, Q., Yao, L., 2009b. Fractal characterization of the spatial
distribution of geological point processes. Int. J. Appl. Earth Obs. Geoinf. 11,
394–402.

Zuo, R., Carranza, E.M.J., 2011. Support vector machine: a tool for mapping mineral
prospectivity. Comput. Geosci. 37, 1967–1975.

Zuo, R., Carranza, E.J.M., 2017. A fractal measure of spatial association between land-
slides and conditioning Factors. J. Earth Sci. 28, 588–594.

J. Zhao, et al. Ore Geology Reviews 112 (2019) 103028

16

http://refhub.elsevier.com/S0169-1368(18)30743-1/h0180
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0185
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0185
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0185
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0190
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0190
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0195
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0195
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0195
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0200
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0200
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0205
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0205
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0205
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0210
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0210
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0210
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0215
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0215
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0215
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0215
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0220
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0220
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0220
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0225
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0225
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0230
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0230
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0230
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0235
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0235
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0240
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0245
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0245
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0250
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0250
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0260
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0260
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0260
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0265
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0265
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0270
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0270
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0270
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0275
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0275
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0275
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0280
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0280
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0280
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0280
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0285
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0285
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0290
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0290
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0295
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0295
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0295
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0295
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0300
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0300
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0305
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0305
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0310
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0310
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0320
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0320
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0325
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0325
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0330
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0330
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0335
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0335
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0340
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0340
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0340
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0345
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0345
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0345
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0350
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0350
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0350
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0355
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0355
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0360
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0360
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0365
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0365
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0365
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0370
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0370
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0375
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0375
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0375
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0380
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0380
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0385
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0385
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0390
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0390
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0390
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0395
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0395
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0395
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0400
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0400
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0400
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0405
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0405
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0405
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0410
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0410
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0410
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0415
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0415
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0415
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0415
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0420
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0420
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0420
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0430
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0430
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0435
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0435
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0435
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0440
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0440
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0440
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0445
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0445
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0450
http://refhub.elsevier.com/S0169-1368(18)30743-1/h0450

	Controls on and prospectivity mapping of volcanic-type uranium mineralization in the Pucheng district, NW Fujian, China
	Introduction
	Geological background
	Regional geological setting
	Lithostratigraphy
	Intrusive rocks
	Structures

	Uranium mineralization characteristics and conceptual genetic model
	Methods and dataset
	Fractal models
	L function
	Fry analysis
	Artificial neural network
	Dataset

	Results
	Spatial pattern analysis of uranium deposits
	Spatial pattern analysis of intersections of faults
	Fractal dimensions of lineament structures

	Discussions
	Complexity of spatial distribution of structures and locations of uranium deposits
	Spatial association of uranium deposits with faults
	Lithological controls on uranium mineralization
	Mapping uranium prospectivity
	Implications for uranium exploration

	Conclusions
	Acknowledgements
	References




