Independent Assessments of Gold, Phosphate, Potash, Uranium, and Rare-Earth Deposits

Australia, Vietnam, Texas and Alaska

by

Michael D. Campbell, P.G., P.H.

Executive Vice President and Chief Geologist / Principal Hydrogeologist

12M Associates, LLC

Houston, Texas

and

M. David Campbell, P.G.

Project Manager and Senior Mining / Environmental Geologist <u>I 2M Associates, LLC</u> Jupiter, Florida

Abstract and Biography

An Invited Lecture Presented to the Houston Geological Society At the Environmental and Engineering Group's Dinner Meeting

> March 9, 2016 Version 1.5

Corporate Website

Gold, Silver, Uranium, Phosphate, Potash, and Rare-Earth Deposits

Here is what we'll cover:

- Gold, and other Commodities on Properties in Queensland, Australia
- Phosphate and Potash Properties in Queensland Australia
- Uranium Properties in South Australia and Texas
- Gold Properties in North Vietnam
- Uranium, Thorium, and Rare Earth Property in Alaska

Brilliant Brumby Tenement

Meetings in Mexico City and Meetings in the Outback of Queensland

Assessments Conducted by I2M Associates, LLC

The Bluff Area

North of The Bluff Area

Satellite View of The Bluff

- Major Gold Mines and Known Prospects
- Subject Tenements

Resolute Mining Limited (Ravenswood & Mt. Wright Mines & Welcome Deposit)
w/ Exploration via Carpentaria Gold Pty Ltd

Geological Map in Area of Wishbone Tenements

- Processed Aeromagnetic Map
- Major Gold Mines
- Identified NE Gold Trends
- New NW Gold Trend
- Subject Tenements

The Welcome Deposit

- Next Mine for Resolute Mining Ltd.
- Underground Mine
- Mine Plan Similar to Mt. Wright Mine

Welcome

Deposit

Aerial Magnetics Map Available from the Queensland Government

Prevailing Gold Mineralization Models in Australia

Gold Mineralization Models in Queensland

Mines and Deposits Typed

On the Ground within the Wishbone II Tenement

The Queensland Outback During Spring "Wet" Period

Dry Creek Outcrop of Granite

Thin Sulfide Veins in Shear Zones (see Tables for Gold and other Metal Values)

Haughton Bluff Creek West to DAB Veins Area Northern Area of Wishbone II Rock-Chip Samples									
SAMPLE #	COPPER	LEAD	ZINC	SILVER	GOLD				
	70	PPM	PPM	PPM	PPM				
3019102	1.1	954	38	75	7.30				
3019103	1,050 ppm	846	327	62	1.23				
3019105	1.5	1,675	329	3	0.05				
3019106	2.6	95	282	2	0.06				
3019109	2,1	739	210	1	0.34				
3019112	2.3	53	210	1	0.07				
3019113	3.3	1,155	276	2	0.21				
3019114	2.2	455	218	1	0.02				
3019115	1,725 ppm	1,960	2,690	2,690	26.3				
3019116	2.8	94	40	1	0.02				
3019117	4.8	736	91	1	0.23				
3019119	1,210 ppm	2,000	106	24	25,20				
3019127	2.6	163	91	3.2	0.03				
3019131	1.9	36	41	1	0.01				
3019137	1.8	141	87	1	0.01				
3019138	3.2	274	137	4.1	0.03				
3019141	5,490 ppm	8.9	120	13.8	0.14				

Oaky Creek Area

Central Area of Wishbone II

Rock-Chip Samples

SAMPLE#	COPPER	LEAD	MOLYBDENUM	ZINC	ANTIMONY	SILVER	GOLD
	PPM	PPM	PPM	PPM	PPM	PPM	PPM
3011363	1,510 ppm	5	1,830	27	1	2.7	0.01
3011367	3,930 ppm	3.2%	1	126	2	4.2	0.03
3011368	2.0%	28.3%	10	389	9	56	0.16
3011373	2770 ppm	674	239	214	3	31	0.10
3011374	1701 ppm	2.7%	10	30	3	3	0.10
3011375	4.2%	202	9	55	7	12	0.20
3011376	6.3%	54	42	142	3	11	0.48
3011385	1.3%	67	476	53	1	6	0.06
3011386	3,130	68	1,675	32	1	6	0.12
3011387	680	142	14	12	1	1	0.02
3011389	635	14	1,945	10	1	2	0.01
3011390	3,570	101	3,260	102	1	9	0.01
3014136	3.6%	2	3	351	3.6%	4	3.5

Heading for Mt . Wright to the South

Entrance to Underground Mine

Mt. Wright Mine

After Resolute Mines, Ltd.

Ravenswood Mine

After Resolute Mines, Ltd.

Ravenswood Mine Area

Trucking Ore from Mt. Wright Mine

After Resolute Mines, Ltd.

Primary and Secondary Crushers

Processing System

After Resolute Mines, Ltd

Heading toward White Mountains Area, Queensland

River in Flood

Volcanics

Black Swan

Aerial Magnetics Map of Tenement Area

Ground Magnetics Surveys Tenement Area

Adjacent Tenement Activities (Drilled and Resource Estimated)

Brolga Cranes

On the Ground and in the Creek

Dike Outcrops

Laboratory Analyses

Historical Workings

White Mountain EPM: Clements Workings

onnaissance Sampling

Laboratory Analyses

Massive Antimony Sulfide (Stibnite)

White Mountan EPM: Edwards Workings **Reconnaissance Sampling** 10.000.00 1,000.00 100.00 PPM (Unless Otherwise Noted) 10.00 1.00 0.10 0.01 Au Ag As Cu Fe Mn Sb Zn Silica sericite altered rock (Outcrop Sample)

Laboratory Analyses

Anomalous in Antimony and Copper

Geologic Map

Current Models of Mineralization for Northern Queensland

INTERGROUP MINING

Brilliant Brumby Project: Northeast Queensland, Australia NI 43-101 / Competent Persons Report (CPR)

> Brumby Group Pty Ltd Southport, Queensland Australia

for:

Michael D. Campbell, P.G., P.H. and Jeffrev D. King, P.G.

I2M Associates, IAC Houston, Texas and Seattle, Washington March 31, 2011 Venine 1.3 Revised April 22, 2012 Brilliant Brumby & The Worm Charters Towers, North Queensland, Australia September, 2012 October 2014

2012 InterGroup Mining Ltd. Presentation (<u>more</u>)

Note: I2M Associates is mentioned at 4 minutes 12 seconds into the above 2012 presentation.

Update 2014 InterGroup Mining Ltd. (more)

Phosphate in Queensland and Northern Territory

Phosphate in Queensland and Northern Territory

Phosphate in Queensland and Northern Territory

Phosphate in Queensland and Northern Territory

		Sherrin (Creek Drilli <u>TABLE</u>	ing Summ	ary -	1968			
	Hole	Total De	pth (ft)	Depth to of Zone	o Top (ft)	Th: of	ickness Zone	Average P ₂ O ₅ of Zone (≥ % E ≥10%)
	SC 1-68	81		61		8	B ft	20.1%	26.1%
	SC 2-68	51		-	Los	t Hole	-	-	
	SC 3-68	105	•	47	(lst	Zone) 2	2 ft	10.5%	13.7%
	•		t:	72	(2nd	Zone) S	j ft	15.6%	20.3%
				85	(3rd	Zone) 4	ft	13.0%	16.9%
-	SC 4-68	90		50	*	16	ft	12.6%	16.4%
	SC 5-68	82		59		14	ft	14.8%	19.2%
	SC 8-68	101		59	a.	8	ft	15.5%	20.2%
	SC 17-68	82	•	. 33		7	ft	11.1%	14.4%
	SC 18-68	91		74		8	ft ft	14.1%	18.3%
	SC 19-68	86		74		1	ft	11.4%	14.8%
	SC 20-68	79		59	(lst	Zone) 4	ft	12.8%	16.6%
				68	(2nd	Zone) 1	ft	10.6%	13.8%
	Total Holes: 10	Total 848 Ft. Drilled	Note: Sub +30% high vuggy forr Campbell	sequent dril her P2O5 val mation: In-o (1968) capti	ling wi ues. W ut sub ures Pa	ith cased /hy? Drill surface a 205 dust	holes by ing P2O5 iir flow as	others indica dust loss and noted by	ited

Sherrin Creek, Qld.... and Alroy Downs, NT Areas

FIELD SHAPIRO (F)		Alr	by Downs Area			
and		FIELD SHAPIRO (F)				
			and			
A.M.D.E.L. SHAPIRO (A)		<u>A.M.D</u>	.E.L. SHAPIRO (A)			
SHERRIN CREEK AREA	2	Alroy 2A				
· · · · · · · · · · · · · · · · · · ·	\mathbf{O}	Footag	e <u>E A</u>			
<u>SC 1-68</u>	· U		<u>% P₂O₅</u>			
Footage F Rece	er er	0-50				
2 P205	SI	51	4 -			
53-54 < 1 -		52	2 -			
	n n	D 53	1 -			
55 <1 -		54	1 -			
56 < 1 -		55	1 -			
-		• 56	1 -			
57 <1 -		57	1 -			
58 2		58	1 -			
50 2 -		59	4 1.4			
59 <1 -		61	11 11 4			
60 2	~	62	13 15.6			
	14	63	15 12.0			
61 10 9.0	1.1.1	64	16 14.7			
62 15 10.0	1.1	65	16 12.3			
02 13 10.0	40	66	14 21.3 27.7			
63 10 12.4		67	9 7.3 9.5 ⁹			
64 25 20		68	10 9.4			
04 25-30 24.4		69	10 9.8			
65 25-30 26.5		70	4 5.5			
66 05 00		/1	4 4.4			
25-30 25.3	24	72	5 4.5			
67 25 24.9		73	4 49			
(C)		75	5 4.7			
08 25 21.6		76	8 10.1			
69 18 15.3		77	10 8.1			
		78	9 9.7			
70 9 7.9		79	10 10.3			
. 71 9 6.6		80	3 -			
71-72 8 6.6						

Sherrin Creek, Queensland

After Campbell (1969), p.25 and Plate III

I2M Principals on the Tenement

South-Central Queensland Outback

- Oil & Gas Drilling
- Adavale Basin
- Thick Salt Intervals
- Potash Zones?
- Cross Section Location

Salt Member > 250 Meters Thick, also within 2,500 meters of the Surface

Chemical Analyses for Bury No. 1 Cores

			(From A. H. W	hite, Poseido	n Limited, 11/3	0/83)		PPM
Core	Depth (Ft) NaC	1(%)	Insoluble (%)	Calcium	Magnesium	Sulfate	Potassium	Bromine
8	5938(1980)	m) 99.4	0.4840	527	25	722	996	189
8	5941	96.4	0.9130	1,116	36	1,801	8,390	235
8	5943	97.6	1.0150	1,056	26	1,617	1,573	173
9	5943	94.4	0.0588	647	21		23,583	1. Statest
8	5945	94.6	0.6150	836	47	1,282	23,231	294
9	6460	93.2	4.5630	4,544	310	6,886	2,884	256
9	6461	92.7	0.4155	1,569	158	<i>.</i>	2,268	
9	6463	86.8	8.6200	6,068	1,151	9,202	6,345	280
9	6465	88.4	2.7420	3,518	168	5,573	39,435	444
9	6466	89.2	0.9134	4,494	160		1,758	- Arteria
9	6467	98.1	0.7951	831	100	1,226	1,993	288
9	6469	97.3	2.4110	1,142	425	1,253	4,143	265
10	6969	98.3	0.8780	5,601	22	2,674	210	158
9	6970	98.7	0.0337	589	14		354	
10	6971	97.3	1.9840	688	42	1,096	524	146
10	6973	96.2	2.7320	2,080	99	3,386	262	138
10	6974	92.4	5.0209	4,714	249	9,255	472	153
10	6977	70.3	17.5140	8,399	526	17,517	839	168
10	6979	96.6	1.3070	2,734	43	5,747	629	158
10	6980	94.6	3.7970	2,569	133	5,501	1,206	147
10	6981	94.5	0.7847	1,982	80		395	
11	7479	94.9	2.9670	2,927	53	6,346	157	69
11	7480	98.5	0.9680	1,998	6	4,165	944	70
11	7483	92.6	6.3920	4,542	35	8,559	944	69
11	7484	95.0	4,0700	3,296	24	6.663	682	68
11	7485	93.6	0.2384	1,397	20		93	
11	7487(2495	m)96.3	1.7850	2,669	16	5,183	944	66
							6973	

Core Analyses Showing Some High Potassium Values

Core Samples Analyses

Possible Downhole Solution Mining

Model of Potash Formation

Scope of Work for Assessment:

- evaluate the available reports on the uranium resources available and the in situ recovery (ISR) methodology under consideration by the Company in the exploration and development activities to date by performing a geological and metallurgical peer review and due diligence Project in South Australia,
- evaluate the professional staff of the Company and associated hydrogeological consultant,
- review assumptions in the financial model emphasizing capital expenditures and operating costs and the associated impacts, and
- identify associated risks regarding the proposed in situ uranium leaching and recovery process for production of yellowcake and sale on the spot market or other markets,

Pre-Visit Model of Uranium Occurrence

Classical Roll-Front Uranium Model for Exploration

Summary and Conclusions of I2M Report:

- Based on the grid drilling conducted to date, the Company has discovered two areas with significant uranium mineralization (i.e., the areas).
- Upon assessing the resource characterization from the logs, cores and geological review, it appears that the available mineralization of the discovery is less than that indicated by the Company. This would result in substantially less in situ recovery from certain areas of the deposit thus reducing the ultimate recovery of grade uranium (U_3O_8) .
- The existing drill holes are insufficient in number and spacing to identify the interior characteristics of the uranium mineralization.
- The underlying granite and its uranium content needs to be better understood as it could contain potentially economic quantities of uranium.
- More core drilling should occur to better understand the geology of the deposit, the amount of available uranium in the sediments and in the underlying granite basement.
- In situ processing of the uranium would be unusually difficult to control under the high-saline environment present in the subsurface.
- The risk of economic recovery from in situ leaching and ion exchange is high due to acid soluble calcium prevalent in the subsurface system, high chloride levels and unknown distribution of the uranium mineralization.
- A move to an open-pit method of mining the deposit should be reviewed, but this method introduces the necessity of re-initiating further permitting, drilling and coring thus delaying production dates.

Disequilibrium Studies:

South Australia Uranium

"MRM 881 reported a peak grade of **5.04%** eU_3O_8 (50,362 ppm) within a broader high grade intercept (*cut-off 100ppm* eU_3O_8):

MRM 881	26.5m	@ 0.19% eU ₃ O ₈	1,900ppm eU3O8
including	15.9m	@ 0.30% eU ₃ O ₈	3,050ppm eU ₃ O ₈
including	4.5m	@ 1.02% eU ₃ O ₈	10,180ppm eU ₃ O ₈

PFN results from the high grade interval show positive disequilibria;

peak grade	natural gamma sonde	5.04% eU ₃ O ₈		
	PFN	7.41% pU ₃ O ₈		
4.5m intercept	natural gamma sonde	1.02% eU ₃ O ₈		
	PFN	1.15% pU ₃ O ₈	"	

• PFN (Prompt Fission Neutron) Logging

- Direct measure of ²³⁵U
- Provides spontaneous measure of disequilibrium
- Expensive, complex, high maintenance system
- Requires specialist radiation licensing
- Limited availability
- -Very slow logging speed (~0.5m/min)

Total Gamma Logging

- Indirect measurement of uranium (²¹⁴Bi and ²¹⁴Pb)
- Cheap and reliable equipment
- Measures all radio nucleotides (Sum of K+Th+U...)

Spectral Gamma Logging

– Measures the energy spectrum of gamma radiation and can discern between different radio nucleotides such as uranium (²¹⁴Bi), thorium (²⁰⁸Tl), K. (After Skidmore (2009))

Eastern Eyre Peninsula Composite Cross-Section

Brorantation Extract 10/05/2015

New Model of Uranium in the Subject Area

In Hanoi, Preparing for the Vietnamese Lunar New Year celebration – called TET. Government extolling virtues of their accomplishments over the past year Increased commerce and electricity...

Domal structure and is composed of volcanic rocks surrounded by faulted sedimentary rocks underlain by intrusive bodies of mafic and mafic-intermediate composition intersected by fault systems of NW-SE and conjugant NE-SW strike.

Pre-hip replacement field transportation up and down the mountains

Underground mining by adit of about 200 yards to working mine face adits.

Client-Consultant discussions at mine

Ore Dump

Sampling at the Mining Face

Hanging Wall-Footwall w/ Mineralization

Minerals Associated with Mineralized Zones in the Doi Bu Area*

Mineralized Zones		Gangue Minerals			
Primary	Secondary	Hydrothermal Minerals	Dike Mineral		
Pyrite Arsenopyrite Galena Sphalerite Chalcopyrite Native gold Electrum Pyrrhotite Bornite Bronze	Goethite Hydrogoethite Anglesite Coveline Chalcosine Malachite Azurite Bromite Svanbergite Pyromorphite	Chlorite Epidote Sericite Ankerite Calcite Feldspar	Quartz Calcite Chlorite Epidote		

* Note: Modified from table in Nguyen Dac Lu, No Date, "Brief Outlines on Gold of Vietnam," 15 p

New Pit ...safety hazard!

Slickensides

Mineralized Quartz Breccia

Mining Company, Government, and I2M Personnel

Native Gold and Pyrite

Pyrrhotite, Pyrite and Quartz

Chalcopyrite and Covellite

Pyrite, Calcite, and Quartz

Regional Geological Survey of Vietnam

Presentation of Geological Information

Heading to Meetings with Mining Company Personnel

Processing Plant

Primary Crusher, Flotation Cells and Primary Filters

Toward Rice Fields

Final Filtration System – Pond Missing

Breach in Tailings Pond Wall into Local Creek

Sampling Tailings Pond Sediments of Final Filters

Tailings Geochemistry

Plant Trench, Tailings Pond and Stream Sediments Arsenic, Cadmium, Mercury, and Lead

Sample ID#	Sample Area	Arsenic (ppm)	Cadmium (ppb)	Mercury (ppb)	Lead (ppm)
I2MA-0001	CAO Ram Trench	2,530	620	178	47.0
I2MA-0002	CAO Ram Trench	2,510	560	182	41.9
I2MA-0003	CAO Ram Pond	6,250	860	346	42.7
I2MA-0004	CAO Ram Pond	6,420	870	342	45.8
I2MA-0005	CAO Ram Creek	3,610	660	158	30.9
I2MA-0006	CAO Ram Creek	3,790	730	177	33.5
Detection Limit		0.2	20	5	0.5

Sampling Results for Arsenic, Cadmium, Mercury, and Lead

Sampling Results for Arsenic

Sampling Results for Gold

Last Evening Dinner Ceremony at the Metropole Hotel

Preparing for the Tet at Hanoi University

Farewell to Vietnam and off to Hong Kong

Texas Uranium

Typical Uranium Deposit in Selected Formations of U.S. Gulf Coast

Significant Differences at Mestena:

- 1. Classical mineralization also fault-related in part.
- 2. Re-reduced mineralization by methane or hydrogen sulfide.
- 3. Uranium occurs at multiple levels

Zone **Uranium Mineralization Roll Front** Molybdenum Zone Zone

Drill Samples

After Dickinson & Duval (1977) * in 1977 HGS Text

Texas Uranium

Typical Uranium Deposit in Selected Formations of U.S. Gulf Coast

Downhole Wireline Logging

Our optimistic economic conclusions were qualified as:

Texas Uranium

1) Assuming yellowcake price does not increase as projected herein

2) Assuming nuclear power plant construction slows or is halted.

3) Assuming development problems do not develop with the ore present in the Mesteña Grande area (to northwest).

4) Assuming a materials shortage does not develop that could delay construction of the new processing plant or compromise the operation of the present plant .

5) Assuming no substantial cost inflation occurs.

6) Assuming a major regulatory issue does not develop relating to an accident, leak, or spill at the existing plant.

Total Production to Date: 4.6 million pounds (U₃O₈)

System	Series	Group			Geologic Unit		Description		
QUATERNARY	locene		Flood-plain alluvium				Sand, gravel, silt, clay.		
	£		Fluvial terrace deposits			00.00	Sand, gravel, silt, clay.		
	Pleistocene		Pleistocene Deweyville Formation, Beaumont Clay, Montgomery Formation, Bentley Form- ation, and Pliocene (?) Willis Sand.				Sand, gravel, silt, clay.		
	Pliocene	Goliad Formation				調調	Fine to coarse sand and conglomerate; cal- careous clay; basal medium to coarse sand- stone. Strongly calichified.		
	Miocene		Fleming Formation				Calcareous clay and sand.		
			Oakville Sandstone				Calcareous, crossbedded, coarse sand, Some clay and silt and reworked sand and clay pebbles near base.		
RTIARY			la mation	12	Chusa Tuff	husa Tuff			
Ξ	22		Catahou dan For	e autho	Soledad Conglomerate	0000	and varicolored sand near base. Soledad in Duval County, grades into sand		
	Oligocene		(Guev	of som	Fant Tuff		renses in northern Duval and adjacent counties.		
			Frio Clay (Southwest of Karnes County)				Light-gray to green clay; local sand-filled chann		
	Sene	Jackson	e .	Fashing Clay		125日	Chiefly clay; some lignite, sand, Corbicula		
			natic	Tordilla Sandstone, Calliham Sandstone		A B	Very fine sand.		
			Forn	Dubose Clay			Silt, sand, clay, lignite.		
	ŭ		sett	Deweesville Sandstone		A-2-3	Mostly fine sand; some carbonaceous silt and cla		
			White	Conquista Clay			Carbonaceous clay.		
			2	Dilworth Sandstone			Fine sand, abundant Ophiomorpha,		

News: Energy Fuels is acquiring Mestena !

Uranium Elsewhere in Texas

Uranium Elsewhere in Texas

Red flames symbols indicate anomalous uranium in groundwater samples from water wells (see Campbell, et al., <u>2015</u> pp. 21-28).

Field Management Team

1stYear Team: Reconnaissance

- Led to the area by results of the NURE Program of the late 1970's
- Field reconnaissance discovered new uranium and rare-earth deposits
- More than \$300,000 spent to date but remains to be developed

Allanite Ca(Ce,La,Y,Ca)Al2(Fe2+,Fe3+)(SiO4)(Si2O7)O(OH)

- Allanite is a member of the epidote mineral group, where some calcium atoms are replaced by REE, particularly cerium..
- The REE content of allanite is typically about 5 % REO, but can vary widely from 3 to 51 %, depending on the local geological conditions, i.e., faulting, contacts with plutonic bodies, etc.

Cathodoluminescence Studies

- Allanite is most commonly found as an accessory mineral in igneous rocks, but rarely in sufficient concentration to be economically mined.
- Typically these igneous rocks include granites, syenites, diorites, and their associated pegmatites.
- The mineral usually occurs as black to dark brown and brownish-violet tabular grains. It has a conchoidal fracture and is often metamict (i.e., its crystal lattice is disrupted while the mineral grain retains its original morphology) due to radioactive decay of thorium, which can weaken the crystal structure.
- The specific gravity of allanite is 3.4 to 4.2 and its hardness is between 5 to 6.5 Moh's scale. these characteristics suggest a possibility of making concentrates during processing of ore during mining. However, metamict varieties may weather rapidly.

Thin Section Analysis

Metal Oxide	Principal Uses	Price US\$/kg	Conversion: 2.2 kg to U.S. \$/lb Range	
Lanthanum oxide 99% min	Rechargeable batteries	8.50 -9.00	3.86	4.09
Cerium oxide 99% min	Catalysts, glass, polishing	4.70 -4.90	2.14	2.23
Praseodymium oxide 99% min	Magnets, glasses colorant	31.80-32.70	14.45	14.86
Neodymium oxide 99% min	Magnets, lasers, glass	32.50-33.00	14.77	15.00
Samarium oxide 99% min	Magnets, lighting, lasers	4.25 -4.75	1.93	2.16
Europium oxide 99% min	TV color phosphors: red	470.00-490.00	213.64	222.73
Terbium oxide 99% min	Phosphors: green magnets	720.00-740.00	327.27	336.36
Dysprosium oxide 99% min	Magnets: lasers	115.00-120.00	52.27	54.55
Gadolinium oxide 99% min	Magnets, superconductors	10.00-10.50	4.55	4.77
Yttrium oxide 99.99% min	Phosphors, ceramics, lasers	15.90-16.40	7.23	7.45
Lutetium oxide 99.99% min	Ceramics, glass, phosphors and lasers	Up to 2.000/kg	454.55	909.09
Thulium oxide 99.99% min	Superconductors, ceramic magnets, lasers, x-ray devices	Up to 3.000/kg	681.82	1363.64

*Source: Substantially modified from MetalPrices.com, October 2008.

188

/ Campbell et al.

Sudan Uranium and Gold

I2M Assessments

Utah Uranium

Alaska Uranium, Thorium, Rare Earths

Ohio Phase II Environmental Projects

Australia Gold and Other Metals

Texas Uranium

For additional information on associated mineral commodities and environmental issues, see the I2M Web Portal

Use Search Line.

Australia Potash and Phosphate

Nevada Base Metals and Geothermal Energy