Paleovalley-related uranium deposits encompass three categories including variants of ‘sandstone-hosted’ deposits, as well as surficial deposits - referred to as ‘calcrete’-type, and lignite-type (Fig. 1; Hou et al., 2007).

The term ‘paleovalley-related’ implies more than just uranium hosted within a paleovalley. This style of uranium mineralisation can be defined as any diagenetic/epigenetic concentration of uranium minerals occurring in fluvial, alluvial, lacustrine, and estuarine sediments. Cenozoic paleovalleys of Australia, and Mesozoic paleovalleys of China host the greatest number of uranium deposits and include the largest and highest grade deposits of this type. Uranium exploration and mining in Australia and China are significant and increasingly important sectors of each country’s respective mineral industry. Here we focus on similarities in the geology of paleovalley-related uranium mineralising systems, which can be used to refine common approaches to exploration. Paleovalley-related uranium resources are developed as sandstone-hosted and surficial deposits within paleovalley-fills, either incised into crystalline bedrock, or into sedimentary cover that often is of similar age to strata that host the mineralisation (Figs. 2, & 3). With respect to Sino-Australian examples, paleovalley-related uranium occurs mostly around the margins of Mesozoic and Cenozoic basins; often the mineralisation is hosted within sands contained within paleovalleys developed upon, or proximal to, Precambrian crystalline rock that contains primary uranium mineralisation (Hou et al., 2007; Li et al., 2008).

Numerous examples are known in Australia and China where granitic rocks of pre-Mesozoic age contain uranium in the range 10–100 ppm, concentrations significantly above the crustal average of 2.8 ppm uranium. Radiogenic
crystalline strata that are incised by paleovalleys are often the inferred source of the sandstone-hosted uranium. Weathered basement rocks in these regions were commonly incised by extensive fluvial systems, developed particularly during the Mesozoic and early Cenozoic, which acted to physically disperse uranium into the cover sediments, combined with chemical remobilisation, dispersion and concentration of uranium throughout the later Cenozoic.

Fig. 3. Generalised model of valley-fill calcrete-hosted (camotite) uranium mineralisation, based on Yeelirrie and Lake Way deposits, Western Australia (modified from Mann and Deutscher, 1978).

Paleovalley-related uranium deposits are typically hosted within un lithified sand, lignitic clays or calcreted channel-fill, deposited in continental or marginal marine environments. Sandstone-hosted uranium deposits invariably contain impermeable clay layers, intercalated within the sedimentary sequence; impervious layers often form the upper and lower bounding strata of individual deposits. Uranium deposits are associated with reduced lithologies; mineralisation is developed where oxidising fluids (carrying dissolved U) were modified by interaction with reduced sands, the latter commonly containing pyrite and dispersed organic matter and/or seams of lignite. Mineralised bodies, often tabular or roll-shaped, formed along the interface between clay horizons and the sandy facies of paleovalleys. Geological, geophysical and geochemical features of the paleovalleys and related uranium deposits have been used to construct models to understand ore genesis and assist exploration for paleovalley-hosted uranium deposits. Australia and China remain highly prospective for the discovery of new paleovalley-related uranium deposits (Fig. 4). The precise geometric definitions of the basin margin and paleovalley architecture are important in identifying exploration targets and improving the effectiveness of drilling. This requires the integration of various geoscientific data sets. Refinements in remote sensing, geophysical techniques and data processing, in combination with sedimentological and depositional interpretations, provide an efficient approach for outlining the principal drainage patterns and channel dimensions (Hou et al., 2012). To help reduce risk, an exploration strategy should combine these technologies with a detailed understanding of the physicochemical parameters of uranium reduction, mobilisation and preservation.

Fig. 4. Main uranium deposits/metallogenic regions in (A) Australia and (B) China (modified from Kreuzer et al., 2010; Zhang and Li, 2008).

Acknowledgements

This paper has benefited from various discussions with industry (e.g., Toro Energy Ltd, Heathgate Resources Pty Ltd, Red Metal Limited, Southern Cross) and with international researchers (e.g., from USA, Canada, Russia,
Kazakhstan, India, and China) through IGCP-514. We also very much thank all the organisations, associations and mining companies which provided IGCP-514 with additional financial support – especially those which kindly hosted or sponsored our field trips and project publications, or underwrote IGCP-514 events. The paper was improved following helpful comments from Professor Larry Frakes.

References