GOLD MINERALISATION

DOI BU AREA

VIETNAM

Authors: Michael Leu B.Sc. (Hons. 1), Consulting Geologist
Principal Target Commodity: Gold
Report Date: July 2010
1:50,000 Geological map sheet: Ha Dong – Hoa Binh Map Sheet, 1989
Contact, Technical Details: Michael Leu 0427000600
CONTENTS

Executive Summary 3
Location, Access, Topography, Demographics 3
Brief Outline of Gold Exploration and Mining in Vietnam 4
Status of Gold Mining in Vietnam 4
Joint Venture Structure 4
Geological Setting and Potential Mineralising System 4
Principal Gold-Bearing Zones of the Doi Bu Area 5
Styles of Mineralisation 7
Risk Assessment 8
Gold Grades and Tonnes 8
Mining Cost Projections 8
Conclusions 9
Recommendations 9
Appendix: Principal Reference Material 10
Appendix: Available Research Data for Due Diligence 10

TABLES
Table 1: Dimensions, Styles & Grades, Identified Gold Mineralisation – Doi Bu Area 6

FIGURES
Figure 1: Geological and Structural Setting, Doi Bu Area 11
Executive Summary

The mineralised gold system of the Doi Bu area in Vietnam extends over a large area (15km²) and has the potential to host a significant gold deposit within an uplifted domal structure. "9 gold mines and gold ore points" have been discovered comprising both structurally controlled vein and wider, disseminated mineralisation. Initial assessment of past exploration presented in report to author (primary data not cited, refer to section below Principle Reference Material) states “the total inferred resources at category 333 are 3,831kg, speculative resources at category 334a are 4,756kg”, i.e. 3.831 and 4.756 tonnes of Gold. Gold grades stated in data provided are insufficient to provide a JORC (Joint Ore Reserves Committee) status compliant with Australian standards. Regardless, it is apparent the Doi Bu area contains widespread gold mineralisation and has the potential to host economic gold resources.

Geophysical data indicates the presence of blind intrusive body at depth. This may be the ‘mineraliser’ and opens potential for, in addition to known surface mineralisation, a large tonnage low grade gold-bearing stock at depth. Structural control of mineralisation provides targets to extend existing and discover further mineralisation.

Known mineralisation discussed herein has been located at surface. This offers the opportunity for development of cash flow from open cut exploitation of higher grade vein structures and bulk open cuttable areas of disseminated mineralisation and sheeted veins. It should be possible to commence small-scale mining via shallow open cut concurrently with ongoing exploration for additional similar targets and to locate the potential source of mineralisation. Drilling will extend known resources laterally and vertically.

The widespread distribution of gold mineralisation offers the opportunity to develop an ore field with a global resource comprising a series of mines delivering ore to a central mill. Typically prudent verification of data provided to the author is best done during a 4-5 days field mapping and sampling program within the Doi Bu area.

Location, Access, Topography, Demographics

The Doi Bu area is situated close to a major city with easy access to facilities required for exploration and mining (fuel, consumables, earth moving equipment, labour, airport). The Doi Bu area belongs to Luong Son District, Hoa Binh province, close to the SW boundary with Hanoi City. The Doi Bu area is located 45 kilometres by road from Hanoi. Road access comprises 30km of national road No.6 from Hanoi to Xuan Mai village and thence 15km by local roads from Xuan Mai to the Doi Bu. The Doi Bu area occupies about 50km² and is bounded by the following coordinates:20° 45’ 30’’ - 20° 50’ 47’’ N; 105° 30’ 12’’ - 105° 37’ 07’’ E

The relief of the Doi Bu area comprises “average-high mountainous” terrain (altitude from 100m to 550m). Radial stream drainage, including gorges, has developed over the domal structure of the Doi Bu area. People living in the area are mostly Muong minority people, and the Dao minority and Kinh people gathering in villages (ban).
Brief Outline of Gold Exploration and Mining in Vietnam

Gold exploration and mining in Vietnam has progressed to a limited extent since the end of conflict in 1975. Emerging from this prolonged military engagement, the war-ravaged nation was politically isolated. In 1986, the government instituted economic and political reforms and began a path towards international reintegration. By 2000, Vietnam had established diplomatic relations with most nations. Its economic growth had been among the highest in the world in the past decade. These efforts resulted in Vietnam joining the World Trade Organization in 2007.

A Report (‘Brief Outlines on Gold of Vietnam. Geological and Mineral Resources Characteristics of the Doi Bu Area’) available to the author states “The methods recently used in gold investigation-assessment work are very limited. Studied gold mines and gold ore regions have not been touched to requested depth. The used ore processing and dressing technologies are only gravimetrical method with recoverability not exceeded 60%. Gold recovery by cyaniding technology is also not reached up to 40%, all of which have causing great losses in gold resources.”

Many new gold occurrences have been identified in Vietnam post 1975. Significant opportunities exist to develop mineral resources that were ‘locked-up’ and unexploited by advanced exploration and mining technologies. The Doi Bu area has not been tested by drilling and potentially contains a large mineralised intrusive responsible for the surface gold mineralisation reported herein.

Status of Gold Mining in Vietnam

“Recently gold in Vietnam is mining at all ranges
- Under State management (Bong Mieu, Pac Lang, Xa Khia) in combination with joint venture with foreign companies,
- Under local (provincial) management,
- Illegal mining without management of any authority.”

Joint Venture Structure

Initial ownership of mineral tenement will comprise 49% to foreign investor and 51% to Vietnamese Government. Upon IPO or similar capital raising the foreign investor can negotiate an increased equity position with the Vietnamese Government.

Geological Setting and Potential Mineralising System (Figure 1)

The large mineralised system of the Doi Bu area in Vietnam extends over an area of 15km² and has the potential to host a significant gold deposit within an uplifted domal structure. Gold mineralisation (vein and disseminated) is structurally controlled by faults and shears that acted as conduits for the mineralizing fluids. Gold is mainly concentrated along reversed fault/slide zones and/or strike-slip fault/slide zones of NW-SE direction and lesser NE-SW and sub-parallel directions. Tension fractures can provide favourable conditions for the formation of cataclastic fracturing and development of large scale stockworks. Some of the higher grade ore bodies are located at the intersection of major structures. Understanding of structural controls and alteration associated with mineralisation will assist further discovery.

Geophysical data indicates the presence of blind intrusive body at depth that may be responsible for the domal structure and associated gold-bearing conduits. This may be the ‘mineraliser’ and opens potential for, in addition to known surface mineralisation, a large tonnage low grade gold-bearing stock at depth. Studies indicate the gold ore was derived from “hydrothermal plutonic” fluids, further evidence for a mineralizing stock at depth.
Principal Gold-Bearing Zones of the Doi Bu Area (Numbers refer Gold Zones listed in table 1 following) – quoted verbatim from report provided by vendor.

“There had been discovered 9 gold mines and gold ore points (Vai Dao, Lang Sen, Lang Ghen, Kha Duoi, Lang Hang, Xom Van, Hop Hoa, Lang Nganh, Lang Chum). The results of initial assessment show the total inferred resources at category 333 are 3,831kg, speculative resources at category 334a are 4,756kg.”

5 The Vai Dao gold ore point
In this ore point, there are discovered 8 ore bodies of vein, lenses chain of lenses forms of 80 to 365m in length; 0.6 to 4.5m in width, average content of Au in these ore bodies is 1 to 7.6g/t; inferred resources at 333 category = 1,091kg; speculative resources at category 334a = 2,022kg.

2 The Lang Sen Gold ore point
In this ore point, there are discovered 8 ore bodies of vein, lenses chain of lenses forms of 31 to 127m in length; 0.6 to 2.03m in width, the depth to dipping is 17m to 50m; average content of Au in these ore bodies is 2.3 to 8.18g/t; speculative resources at category 334a = 616kg.

3 The Xom Van Gold ore point
In this ore point, there are discovered 6 ore bodies of vein, lenses chain of lenses forms of 100 to 530m in length; 0.6 to 2.03m in width, the depth to dipping is 17m to 50m; average content of Au in these ore bodies is 0.5 to 8.0g/t; inferred resources at 333 category = 2,740kg; speculative resources at category 334a = 889kg.

6 The Lang Nganh Gold ore point
In this ore point, there are discovered 6 mineralization belts and 01 ore body of vein form of 0.6m in width; average content of Au in these ore bodies is 12.9g/t; speculative resources at category 334a = 108kg.

8 The Lang Ghen Gold ore point
In this ore point, there are discovered 14 mineralization belts and 4 ore bodies of vein form of some mm to 20cm in width; average content of Au in these ore bodies is 12.9g/t; speculative resources at category 334a = 1,102kg.

<table>
<thead>
<tr>
<th>Gold Zone</th>
<th>Nature of Mineralisation</th>
<th>Length (m)</th>
<th>Width (m)</th>
<th>Depth (m)</th>
<th>Dip</th>
<th>Au Grade Grams/Tonne</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 vein structures</td>
<td>100</td>
<td>0.73</td>
<td></td>
<td></td>
<td>0.2-2.2, average 1.1</td>
</tr>
<tr>
<td>2</td>
<td>8 vein structures nos.</td>
<td>52</td>
<td>2</td>
<td></td>
<td></td>
<td>2.75</td>
</tr>
<tr>
<td></td>
<td>9 -16. No.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Vein No.10</td>
<td>160</td>
<td>0.79</td>
<td>80°</td>
<td></td>
<td>4.6</td>
</tr>
<tr>
<td>2</td>
<td>Vein No. 11</td>
<td>127</td>
<td>1.16</td>
<td></td>
<td></td>
<td>3-18.7, average 8.18</td>
</tr>
<tr>
<td>2</td>
<td>Vein No. 12</td>
<td>32</td>
<td>0.78</td>
<td>80°</td>
<td></td>
<td>6.7</td>
</tr>
<tr>
<td>2</td>
<td>Vein No.13</td>
<td>31</td>
<td>0.67</td>
<td>85°</td>
<td></td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>Vein No.14</td>
<td>87</td>
<td>0.6</td>
<td>80°</td>
<td></td>
<td>6.3</td>
</tr>
<tr>
<td>2</td>
<td>Vein No. 15</td>
<td>84</td>
<td>2.03</td>
<td>80°</td>
<td></td>
<td>3.23</td>
</tr>
<tr>
<td>2</td>
<td>Vein No. 16</td>
<td>117</td>
<td>0.8</td>
<td>75°</td>
<td></td>
<td>4.32</td>
</tr>
<tr>
<td>3</td>
<td>Mineralised Zone No.1</td>
<td>300</td>
<td>25-30</td>
<td></td>
<td></td>
<td>0.4-8</td>
</tr>
<tr>
<td>3</td>
<td>Mineralised Zone No.2</td>
<td>1,100</td>
<td>40-160</td>
<td></td>
<td></td>
<td>Average content <0.4, areas 1-9</td>
</tr>
<tr>
<td>3</td>
<td>Vein No.1 TQ1</td>
<td>100</td>
<td>3.74</td>
<td>50</td>
<td>80°</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>Vein No.1 TQ1a</td>
<td>100</td>
<td>1.2</td>
<td>50</td>
<td>80°</td>
<td>8</td>
</tr>
</tbody>
</table>
Gold Mineralisation Doi Bu Area Vietnam

<table>
<thead>
<tr>
<th>Vein No.</th>
<th>TQ</th>
<th>Width (m)</th>
<th>Depth (m)</th>
<th>Grade (g/t)</th>
<th>Width Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.2</td>
<td>530</td>
<td>9.62</td>
<td>36</td>
<td>45-60^9</td>
<td>2.79</td>
</tr>
<tr>
<td>No.2 TQ2a</td>
<td>400</td>
<td>2.11</td>
<td>28</td>
<td>45-60^9</td>
<td>4.29</td>
</tr>
<tr>
<td>No.3 TQ3</td>
<td>500</td>
<td>7.05</td>
<td>38</td>
<td>60^9</td>
<td>3.13</td>
</tr>
<tr>
<td>No.3 TQ3a</td>
<td>410</td>
<td>2.84</td>
<td>21</td>
<td>60^9</td>
<td>4</td>
</tr>
<tr>
<td>No.4</td>
<td>125</td>
<td>4.06</td>
<td>17</td>
<td>50^9</td>
<td>5.34</td>
</tr>
<tr>
<td>No.5 TQ5</td>
<td>330</td>
<td>9.31</td>
<td>35</td>
<td>60^9</td>
<td>1.91</td>
</tr>
<tr>
<td>No.5 TQ5a</td>
<td>245</td>
<td>2.86</td>
<td>20</td>
<td>60^9</td>
<td>4.03</td>
</tr>
<tr>
<td>No.6</td>
<td>100</td>
<td>2.65</td>
<td>50</td>
<td>50^9</td>
<td>2.05</td>
</tr>
<tr>
<td>No.7</td>
<td>60</td>
<td>0.5-3.5</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>No.7 TQ2</td>
<td>95</td>
<td>0.88</td>
<td></td>
<td>65^9</td>
<td>2.3</td>
</tr>
<tr>
<td>No.2</td>
<td>138</td>
<td>0.85</td>
<td></td>
<td>65-85^9</td>
<td>3.55</td>
</tr>
<tr>
<td>No.3</td>
<td>80</td>
<td>0.92</td>
<td></td>
<td>70^9</td>
<td>1</td>
</tr>
<tr>
<td>No.4</td>
<td>365</td>
<td>2.28</td>
<td></td>
<td>65-75^9</td>
<td>7.64</td>
</tr>
<tr>
<td>No.5</td>
<td>82</td>
<td>0.82</td>
<td></td>
<td>40^9</td>
<td>2.9</td>
</tr>
<tr>
<td>No.6</td>
<td>94</td>
<td>0.63</td>
<td></td>
<td>75^9</td>
<td>1</td>
</tr>
<tr>
<td>No.7</td>
<td>54</td>
<td>1</td>
<td></td>
<td>80^9</td>
<td>2.2</td>
</tr>
<tr>
<td>No.8</td>
<td>90</td>
<td>1</td>
<td></td>
<td>75^9</td>
<td>1</td>
</tr>
</tbody>
</table>

Vein No.6	6 Mineralised Zones	Up to 20m	80.90	4.04	
Vein No.7a	300	0.6	45^9	0.4-12.9	
Vein No.7	250	35	60	80-90^9	One assay 6.5
Vein No.8	350	60		90-100^9	72kg gold ≥1
Vein No.9	350	60		90-100^9	72kg gold ≥1
Vein No.10	350	60		90-100^9	72kg gold ≥1

Table 1: Dimensions, Styles and Grades of Identified Gold Mineralisation – Doi Bu Area

3*: 11 gold mineralised zones with ≥0.1 g/t Au. Of these Mineralised Zones No. 1 and No.2 have commercial potential. 3**: There are 7 ore bodies within Mineralised Zones No. 1 and No.2. These ore bodies have “vein network shape” and some are ‘divided in 2 sub-bodies” designated TQ.

8*: Conflict in grades within same report.

Veins in this report and table above comprise primarily structurally controlled gold in quartz veins, intrusive vein dykes and altered host rocks ±narrow (>10mm wide) quartz veins accompanied by pyrite, arsenopyrite, chalcopyrite, ±sphalerite, ±galena, ±bornite, ±tennantite (antimony), ±magnetite (wall rock). Some quartz veins exhibit brecciation, indicative of shear-hosted emplacement. Depth of mineralisation is presumed to be derived from intercepts of illegal hand-mining operations and hence represents a minimum vertical depth, rather than the vertical limit of a narrowing ore lens.

Mineralisation is present in two principal forms:

- Structurally controlled, narrow (typically 0.5 - 2m wide but up to 9.62m wide) veins ranging 1-8 grams per tonne Au. These mineralised structures range from 31m to 500m in length with most between 60m to 120m in length.
- Zones of disseminated mineralisation and closed spaced narrow quartz vein mineralisation that could potentially contain economic, large tonnage, low grade bulk open-pittable resources.
Most veins appear to have been sampled at surface or at depth via shallow (pits and underground workings) exploitation of illegal mining. At surface gold is generally enriched by supergene processes and this can continue vertically for tens of metres in deeply weathered tropical environments – to depths far below those tested by illegal mining and yet to be tested by drilling. However, primary sulphide reported in many gold-bearing samples indicates a limited extent to supergene processes. Field examination is required to resolve this aspect of the field.

Offers opportunity for development of cash flow from open cut exploitation of higher grade vein structures and bulk open cuttable areas of disseminated mineralisation and sheeted veins. The steeply dipping nature of many of the vein structures assists open cut development. The expected deeply weathered surface rocks should be relatively soft (clay mineralization) and yield low mining costs per cubic metre for at least a depth of 10 metres.

Potential may exist for copper and silver credits (up to 40ppm) in some mineralised zones. However presence of primary sulphides in many mineralised samples indicates weathering may not be deep and metallurgical studies are required to determine the appropriate mill design. Excessive sulphides, especially chalcopyrites, increase cyanide consumption and hence cost of recovery. Flotation may be required to recover gold in saleable Cu concentrates, followed by a gravity circuit to recover free gold. The near surface, open pittable gold bearing ore should be amenable to carbon-in-leach (CIL) treatment with, after comprehensive metallurgical test work, an anticipated 92% to 95% recovery. Current, illegal primitive mining methods involve simple gravity circuits that typically recover less than 60% contained gold.

Most mineralised areas appear open laterally and vertically. Drilling will potentially increase volume of known mineralisation. Further, systematic exploration using modern technologies (geochemical, geophysical) would be expected to locate many new areas of mineralisation. The author has developed exploration concepts based on specific geological criteria considered as important to controlling the localisation and upgrading of mineralisation.

Following an initial site field investigation, a detailed exploration program can be designed to test conceptual mineralisation models. However, it would appear possible to commence small-scale mining via shallow open cut concurrently with ongoing exploration for additional similar targets and to locate the potential source of mineralisation.

Risk assessment
As stated above, the Doi Bu area in Vietnam extends over an area of 15km² and has the potential to host a significant gold deposit within an uplifted domal structure. However this project is currently at an early stage of mineral resource delineation and a number of significant assumptions (especially average grade and continuity of same within mapped lengths and widths of mineralised structures) have been made with respect to resource characteristics. These assumptions require testing through further exploration. The data used in this report is sufficient to justify further resource delineation. The modeling of very generalized tonnes and gold grades following will assist in assessing the risk profile and in determining appropriate allocation of financial and technical resources. No factor for ore removed by illegal, primarily hand-mining, has been factored into these calculations.

Gold Grades and Tonnes
Based on large volume open cuttable targets that may provide early mining/cash flow potential.

Mineral Vein No.2 TQ2
Vein No. 2 TQ2 | 530 metres | 9.62m | 36m | 45-60° | 2.79 grams/tonne Au

530m x 9.62m x 36m = 183,550m³ x SG (Specific Gravity) 2.7 = 495,585 tonnes x 2.79g/t Au = 1,382,682 grams Gold = 44,459 ounces Gold.

Vein No. 4 | 125 metres | 4.06m | 17m | 50° | 5.34

125m x 4.06m x 17m = 8,627m³ x SG (Specific Gravity) 2.7 = 23,293 tonnes x 5.34g/t Au = 124,385 grams Gold = 3,999.5 ounces Gold.

This exercise can be repeated where dimension and grades are given for mineralisation listed in Table 1. All reported mineralised structures listed in Table 1 represent sites for shallow target defined drilling.

Mining Cost Projections
The author was recently involved in a project in Australia where a bulk open cuttable resources 1,960,000 tonnes at 3.8 g/t Au would yield 217,000 ounces (assuming approx. 90% recovery of gold). The report was produced by a multi-disciplined Mining Engineering Consulting Group. It is currently confidential but the author anticipates approval may be obtained to permit viewing but not copying. A steady-state processing plant throughput rate of 400,000 tonnes per year was selected for the model, providing a production life of 5.1 years. The model included the cost of exploration, construction and operation of the mine. Total cost was $680 per ounce of gold sold. The level of accuracy of this cost was considered as ±50%. A similar scenario is relevant to many zones within the Doi Bu gold field.

The cost ($680/ounce Gold) given above does not represent a cash flow projection as many uncertainties concerning resource characteristics require further exploration for resolution. However the estimate provides an indication of project potential should the parameters in Table 1 prove realistic.

Conclusions
• The Doi Bu area in Vietnam extends over an area of 15km² and has the potential to host a significant gold deposit within an uplifted domal structure.

• “9 gold mines and gold ore points” have been discovered comprising both structurally controlled vein and wider, disseminated mineralisation.

• Initial assessment of past exploration presented in report to author (primary data not cited, refer to section below Principle Reference Material) states “the total inferred resources at category 333 are 3,831kg, speculative resources at category 334a are 4,756kg”, i.e. 3.831 and 4.756 tonnes of Gold.

• Gold grades stated do not provide a JORC status compliant with Australian standards. Method and density of sampling for gold grades given for ore bodies is not provided in primary Report supplied to vendor. Regardless, it is apparent the Doi Bu area contains widespread gold mineralisation and has the potential to host economic gold resources.

• Geophysical data indicates the presence of blind intrusive body at depth. This may be the ‘mineraliser’ and opens potential for, in addition to known surface mineralisation, a large tonnage low grade gold-bearing stock at depth.
• Structural control of mineralisation provides targets to extend existing and discover further mineralisation.

• Known mineralisation discussed herein has been located at surface. This offers the opportunity for development of cash flow from open cut exploitation of higher grade vein structures and bulk open cuttable areas. It should be possible to commence small-scale mining (following shallow drilling, metallurgical and mining studies) via shallow open cut concurrently with ongoing exploration for additional similar targets and to locate the potential source of mineralisation. Drilling will extend known mineralisation laterally and vertically.

• This project is currently at an early stage of mineral resource delineation and a number of assumptions (especially average grade and continuity) have been made with respect to resource characteristics.

• Typically prudent verification of data provided to the author is best done during a 4-5 day mapping and sampling program within the Doi Bu area. Primary data used to establish average grades require auditing.

• The widespread distribution of gold mineralisation offers the opportunity to develop an ore field with a global resource comprising a series of mines delivering ore to a central mill.

• Close to major city, excellent road access.

Recommendation: Obtain option from vendor to undertake initial due diligence via field (approximately 5 field days) mapping and sampling of the Doi Bu area by an experienced geologist. Primary data used by vendors geologists and that held by the Geological Survey of Vietnam (and equivalents) should also be obtained and reviewed. The option period should cover sufficient time to enable receipt and interpretation of assays from a recognized Australian Analytical company (ALS Chemex, etc.). An exploration program and budget can be developed sufficient to verify grades and tonnages and to model capital costs for an interim, small scale mining operation to occur concurrently with ongoing exploration to increase gold reserves.

Appendix

Principal Reference Material

('Brief Outlines on Gold of Vietnam. Geological and Mineral Resources Characteristics of the Doi Bu Area’ Report provided by vendor to author. The author has not cited primary assay data. Method and density of sampling for gold grades given for ore bodies not provided in Report. Gold grades stated do not provide a JORC status compliant with Australian standards. Regardless, it is apparent the Doi Bu area contains widespread gold mineralisation and the potential to host economic gold resources. Typically prudent verification of data contained in the Report is best done during a 4-5 days field mapping and sampling program within the Doi Bu area.

Available Research Data for Due Diligence

Geological and metallurgical research data is available on the Doi Bu area. It is recommended as part of the preliminary field investigation, that copies of the reports listed below are obtained.
The whole territory of the Doi Bu area had been subjected to 1/50,000 scale geological mapping (Ha Dong – Hoa Binh Map Sheet, 1989).

1/10,000 scale petrographic-structural sketch-map of Vai Dao-Cao Ram location, 1992

Study results on the substantial composition and possibility of ore dressing for primary gold from Cao Ram mine, Hoa Binh province, 1992.

Evaluative investigation work of primary gold of Cao Ram - Doi Bu area, Luong Son district, Hoa Binh province (including professional study topic: "Ore substantial composition of the Lang Sen ore point"), 1993.

Supplemental investigation and evaluative investigation of primary gold in the Doi Bu, Luong Son, Hoa Binh (including professional study topic:"Substantial composition, origin and distribution of primary gold ore in the Doi Bu area"), 1998.

Study on the relationship between volcanic rocks in Song Da, Vien Nam area and gold and copper ore mineralization, 2005.

Figure 1: Geological and Structural Setting, Doi Bu Area. Large mineralised system covering 15km². Gold mineralisation delineated by diagonal lines. Note Gold is associated with faults and shears (black, faint solid lines) that have acted as conduits for mineralizing fluids potentially derived from a mineralised igneous stock at depth. The stock has presumably uplifted the overlying faulted terrain; note radial drainage.