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Land subsidence risk to infrastructure in US 
metropolises
 

Leonard O. Ohenhen    1,2,3,13 , Guang Zhai3,4,13, Jonathan Lucy3,5, 
Susanna Werth3, Grace Carlson3,6, Mohammad Khorrami3,5, Florence Onyike3,5, 
Nitheshnirmal Sadhasivam    3,5, Ashutosh Tiwari3,7, Khosro Ghobadi-Far3,8, 
Sonam F. Sherpa    3,9,10, Jui-Chi Lee    3,11, Sonia Zehsaz    3 & 
Manoochehr Shirzaei    3,5,12,13

Land subsidence is a slow-moving hazard with adverse environmental and 
socioeconomic consequences worldwide. While often considered solely 
a coastal hazard due to relative sea-level rise, subsidence also threatens 
inland urban areas, causing increased flood risks, structural damage and 
transportation disruptions. However, spatially dense subsidence rates 
that capture granular variations at high spatial density are often lacking, 
hindering assessment of associated infrastructure risks. Here we use space 
geodetic measurements from 2015 to 2021 to create high-resolution maps 
of subsidence rates for the 28 most populous US cities. We estimate that at 
least 20% of the urban area is sinking in all cities, mainly due to groundwater 
extraction, affecting ~34 million people. Additionally, more than 29,000 
buildings are located in high and very high damage risk areas, indicating a 
greater likelihood of infrastructure damage. These datasets and information 
are crucial for developing ad hoc policies to adapt urban centers to these 
complex environmental challenges.

The slow and gradual sinking of Earth’s surface—land subsidence—is 
a present and growing hazard with costly environmental, social and 
economic impacts on urban centers1–4. Globally, the narrative of sink-
ing cities has drawn widespread attention to rapidly sinking coastal 
areas, such as Jakarta, Bangkok, Venice and New Orleans1,5–7. However, 
beyond these vulnerable coastal cities, a broader spectrum of major 
cities worldwide, including inland metropolises such as Mexico City, 
Beijing and Tehran, are experiencing major subsidence at rates that 
necessitate immediate attention due to their potential impacts on 
infrastructure8–11. Even modest rates of urban subsidence can pro-
foundly impact the structural integrity of buildings, roads, bridges 

and dams12. Over time, these incremental changes may accumulate, 
magnifying vulnerabilities within urban systems, notably exacerbat-
ing existing flood risks with impacts on urban livability3,13,14. Moreo-
ver, the anthropogenic drivers of subsidence, including groundwater 
extraction and the loading effect of urban development15,16, are likely 
to intensify as cities continue to grow and climate change exacerbates 
environmental stresses. The compounding effect of climate change 
and urban population and socioeconomic growth emerges as a critical 
concern, potentially accelerating subsidence rates and transforming 
previously stable urban areas into vulnerable zones1,17,18. Specifically, 
climate-induced droughts and the increasing demand for freshwater 
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Next, we projected the corrected LOS velocity measurements in the 
vertical direction to obtain vertical displacement (that is, subsidence or 
uplift). The vertical velocities for each city are referenced to the IGS14 
global reference frame, ensuring consistency with global vertical land 
motion (VLM) standards (Methods).

On average, 25 out of the 28 US cities are experiencing sinking 
(negative VLM) at varying rates (Fig. 1a, Extended Data Figs. 1–3 and 
Supplementary Table 2). Specifically, in nine of the 25 sinking cities 
(New York, Chicago, Houston, Dallas, Fort Worth, Columbus, Seattle 
and Denver), we find area-weighted average subsidence (calculated by 
weighting subsidence rates by the spatial extent of sinking areas; Meth-
ods) greater than 2 mm per year. Several cities in Texas—the fastest-
growing state in the United States—including Houston, Fort Worth and 
Dallas, exhibit the highest measured subsidence rates among all cities, 
with average subsidence rates exceeding 4 mm per year. However, it is 
essential to highlight that vertical land deformation often varies spa-
tially within cities, and subsidence (or uplift) hotspots can be found in 
cities experiencing overall average uplift (or subsidence) (Fig. 1b,f and 
Extended Data Figs. 1j,l and 3d). From an urban risk perspective, the 
cities with the greatest spatial variability may experience the greatest 
hazard to urban infrastructure, as discussed in the later section.

In every city, at least 20% of the area is sinking (that is, VLM < 0), 
and in 25 out of the 28 cities, at least 65% is sinking (Fig. 2a and Sup-
plementary Table 3). We estimate that a total land area of 17,900 km2 
is sinking across these 28 US cities (Fig. 2b). The cities with the most 
widespread subsidence in the United States, with about 98% of the 
cities’ area affected include Chicago, Dallas, Columbus, Detroit, Fort 
Worth, Denver, New York, Indianapolis, Houston and Charlotte (Fig. 2a). 
In five cities—New York, Chicago, Houston, Dallas and Fort Worth—at 
least 10% of the city area is sinking at a rate exceeding 3 mm per year 
(Fig. 2a and Supplementary Table 3). Among these, Dallas, Fort Worth 
and Houston exhibit the highest proportion of sinking areas, with over 
70% of their land area experiencing subsidence at this rate. Houston—
the fastest-sinking city out of the 28 most populated US cities—has 
42% of its land area subsiding faster than 5 mm per year and 12% sub-
siding faster than 10 mm per year (Supplementary Table 3). While not 
accounting for a major share of the city area, most cities have localized 
zones where the land is sinking faster than 5 mm per year (Fig. 2a). For 
example, notable subsidence greater than 5 mm per year is observed 
in several areas in LaGuardia Airport, New York (Fig. 1b); Northgate 
and Los Prados, Las Vegas (Fig. 1c); East Potomac Park, Washington, DC  
(Fig. 1f); northern part of Treasure Island and areas adjacent to 
Islais Creek, San Francisco (Extended Data Fig. 2e); and Long Beach,  
Los Angeles (Extended Data Fig. 1b).

To estimate the population exposed to urban subsidence, we 
utilized the 2020 US census data for each city. Our estimates show 
that about 33.8 million people (greater than the current population of 
Texas: ~30 million) or 10% of the total US population currently reside on 
sinking land across the 28 US cities (Fig. 2b and Supplementary Table 3). 
In addition, 4.7 million (including residents of New York; Los Angeles; 
Houston; Dallas; Washington, DC; Columbus and so on) and 1.1 million 
(including residents of Houston, Los Angeles, Fort Worth, Las Vegas 
and Dallas) people are exposed to subsidence greater than 3 and 5 mm 
per year across US cities, respectively (Fig. 2b). Eight cities (New York, 
Chicago, Los Angeles, Phoenix, Houston, Philadelphia, San Antonio and 
Dallas) account for over 60% of the total subsiding population, with the 
population exposed to subsidence exceeding 1 million people in each 
city (Supplementary Table 3). New York City alone accounts for 26% 
of the total subsiding population, with the other seven cities making 
up 5–8% of the population residing on subsiding land (Supplemen-
tary Table 3). Notably, these eight cities with subsidence exceeding 
3 mm per year have experienced more than 90 flood events since 2000  
(ref. 25), and ongoing land subsidence may exacerbate the flood 
hazards, particularly due to the expected climate-change-induced 
increases in the frequency and intensity of extreme weather events3,26,27.

resources are likely to exacerbate the risk of subsidence, projecting a 
future where an increasing number of cities may face major challenges 
in subsidence management.

Historically, land subsidence in the United States has been docu-
mented to affect more than 17,000 square miles in 45 states19. A sys-
tematic literature review identifies documented cases in more than 50 
cities nationwide (Supplementary Table 1). Notable subsiding regions 
and cities across the United States include the Houston–Galveston area 
in Texas14; Phoenix in Arizona20; the Las Vegas Valley in Nevada21; the 
Mississippi Delta in Louisiana22; major cities on the East Coast of the 
United States, such as Hampton Roads in Virginia and Charleston in  
South Carolina12; and Alaska19. In the Houston–Galveston area, long-
term groundwater mining and oil and gas extraction have resulted 
in subsidence rates of up to 2 inches (5 cm) per year in certain areas. 
Similarly, the Phoenix metropolitan area and Las Vegas Valley have 
recorded yearly subsidence rates of up to 3.5 inches (9 cm). The  
Mississippi Delta is experiencing subsidence rates greater than 1 cm per 
year, exacerbated by reduced sediment deposition due to levees  
and dams. Glacial isostatic adjustment (GIA) and anthropogenic  
activities on the US East Coast are causing subsidence at variable rates, 
reaching up to 5 mm per year in some cities. In Alaska, permafrost 
thawing has induced subsidence at variable rates, with some areas 
experiencing changes of up to 0.4 inches (1 cm) per year.

The widespread, geographically diverse and multifactorial nature 
of subsidence in the United States presents challenges for infrastruc-
ture resilience, urban planning and environmental management, neces-
sitating the monitoring of spatiotemporal patterns and rates of land 
elevation changes. In situ point-based observations, such as global 
navigation satellite systems (GNSS) and leveling, provide accurate 
measurements of subsidence extent and rates but have limited spa-
tial resolution2,7. Recent studies employing statistical models and 
machine learning have provided insights into the spatial extent of 
land subsidence in the United States and globally23,24. However, these 
models often lack the spatial resolution necessary to capture localized, 
fine-scale land motion variations, which are crucial for assessing urban 
vulnerabilities3. These challenges and the resulting lack of detailed 
high-resolution data may impede the implementation of targeted 
subsidence mitigation and adaptation efforts.

Satellite-based observations via interferometric synthetic aper-
ture radar (InSAR) overcome these challenges and can be assimilated 
in global models and complement point observation datasets. This 
study systematically observes land elevation changes across the 28 
most populous US cities. Our analysis leverages Sentinel-1 SAR datasets 
at ~28-m resolution and mm-level precision to address the need for 
high-resolution and accurate subsidence monitoring. Collectively, the 
population of these cities constitutes about 12% of the total US popu-
lation and includes all US metropolises with populations exceeding 
600,000 people (Supplementary Table 2). Using the dataset of land 
elevation changes, we evaluate the hazards associated with differential 
settlement and assess the associated risks to infrastructure across 
these cities. The implications of these analyses are manifold: from the 
immediate need for infrastructural adaptation to promote sustainable 
urban development in the face of escalating environmental pressures 
to the long-term imperatives of groundwater management.

Subsidence hotspots and spatial variability in  
US cities
We estimate the spatial pattern of land subsidence in 28 urban cities 
across the United States using advanced multitemporal SAR inter-
ferometric analysis of Sentinel-1 A/B C-band satellites (Methods). The 
SAR datasets include 3,500 acquisitions obtained in ascending orbit 
between 2015 and 2021. Using these datasets, we generate a spatial 
map (resolution of ~28 m) of the temporal deformation of the ground 
in the line-of-sight (LOS) of the satellite. Assuming a uniform horizontal 
deformation, we fit and remove a plane from the LOS displacements. 
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Fingerprints of urban subsidence
Both natural and anthropogenic-driven processes at various scales 
contribute to land subsidence in urban cities across the United States19. 
In cities such as New York; Philadelphia; Washington, DC; Denver; Indi-
anapolis; Columbus; Detroit; Nashville; Chicago and Portland, contem-
porary rates of GIA are a dominant factor driving regional land elevation 
loss, which can vary from 1 to 3 mm per year (refs. 3,12,28,29; Extended 
Data Fig. 4). Regional variability in the VLM observed in cities along 
the western coast of the United States, such as Seattle, Portland and  
San Francisco, may be influenced by tectonic activities associated with 
the active plate margins and/or sediment compaction30. Whereas natu-
ral processes influence urban land subsidence in the United States, 
most of the sinking land results from human-driven activities, with 
80% of the subsidence associated with groundwater withdrawals19. 
This extraction–subsidence relationship is based on the principle of 
effective stress (total stress minus pore-fluid pressure)31. When ground-
water is pumped from an aquifer, the pore-fluid pressure decreases, 
leading to a decline in the hydraulic head, reflected by lower water levels 
in groundwater wells. This decrease in pore-fluid pressure increases 
the effective stress (for constant total stress), causing compaction of 
susceptible aquifer systems (for example, fine-grained material) that 
leads to land subsidence at the surface2,31,32.

To assess the impact of groundwater extraction on urban subsid-
ence across the 28 US cities, we obtained a county-level dataset of esti-
mated groundwater withdrawals from principal aquifers (Methods). 

Comparisons of the average VLM for 32 counties hosting these cit-
ies showed no significant linear correlation between groundwater 
withdrawal rates and surface elevation changes at a regional scale 
(Supplementary Fig. 1). However, this lack of correlation does not 
necessarily preclude a relationship but rather highlights the complex-
ity of subsidence mechanisms. Aquifer properties, including volume, 
connectivity, diffusivity and spatial extent, probably influence the 
response of land surface elevation to groundwater extraction. Conse-
quently, the effects of anthropogenic processes (that is, groundwater 
withdrawal) on subsidence may be highly localized, varying based on 
hydrogeological conditions and heterogeneous withdrawal patterns. 
To better understand the local context, we obtained the time series 
of groundwater data across 13 cities (representing ~46% of the 28 
cities) from the US Geological Survey (Methods) and estimated the 
depth to groundwater-level trends for 90 wells (27 confined aquifers, 
42 unconfined aquifers and 21 unknown aquifers) using Theil–Sen 
regression (Methods). The trends show groundwater-level decline in 
24%, 53% and 47% of the confined, unconfined and unknown aquifer 
systems, respectively, at rates between 0.01 and 3.4 m per year. Some 
wells also showed increased groundwater levels at an average rate 
of 0.2 ± 0.3 m per year, suggesting variability in groundwater trends 
across the different aquifer systems. Note that the groundwater 
trends are estimated for the period of the VLM data (2015–2021) and 
may not reflect the long-term trends in groundwater levels across 
the United States33.
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Fig. 1 | Urban land subsidence in US cities. a, The average rate of VLM for 28 
US cities as evaluated in this study. Each circle is color-coded to the respective 
average VLM for each city (Supplementary Table 2). b–f, Spatially varying VLM 
for New York, NY (b); Las Vegas, NV (c); Seattle, WA (d); Houston, TX (e) and 
Washington, DC (f). The location of each city is highlighted in a. Positive VLM 
(green–purple colors) indicates uplift, and negative VLM (yellow–orange–red 

colors) indicates subsidence. LGA, LaGuardia Airport, NY. Individual VLM 
maps for all 28 cities are shown in Extended Data Figs. 1–3. National and state 
boundaries in a are based on public domain vector data by World DataBank 
(https://data.worldbank.org/) generated in MATLAB. Background images in b–f 
from streets-dark ESRI, HERE, Garmin, Foursquare, METI/NASA, USGS.
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To investigate the impact of localized groundwater-level changes 
on VLM, we compared the groundwater-level rates with the average 
non-GIA VLM rates from InSAR pixels within a 50-m radius of the well 
locations. The analysis shows narrow variances and a poor correlation 
for unknown (ρ = 0.13) and unconfined (ρ = 0.43) aquifers (Fig. 3a and 
Extended Data Fig. 5). In contrast, we observe a strong correlation of 
0.87 between the vertical deformation and changes in the groundwa-
ter levels within the confined aquifer systems (Fig. 3a and Extended 
Data Fig. 5). This linear relationship (R2 = 76%) suggests that 76% of 
the observed variation in non-GIA subsidence (or uplift rates) across 
the cities are associated with changes in groundwater levels within 
the confined aquifers (Fig. 3a). Also, a decrease (or an increase) in the 
groundwater levels drives corresponding subsidence (or uplift) in the 
land above the wells. However, we acknowledge the following caveats: 
(1) because of the variability in aquifer characteristics across different 
cities, broad estimates using a single slope value are not feasible, (2) this 
interpretation does not extend to every location but is only valid within 
the spatially limited 13 cities explored, (3) we note the existence of some 
discrepancies between the trends in groundwater-level changes and 
the VLM rates. For example, in 24% (or 19%) of the confined aquifers 
in cities such as Memphis; Washington, DC; New York; Houston and 
San Diego, we note subsidence (or uplift) corresponding to a decline 
(or increase) in groundwater levels (Fig. 3a). However, 12 wells show 
subsidence despite increased groundwater levels, suggesting delayed 
compaction following a period of decline34.

Furthermore, we compared the temporal dynamics of ground-
water levels and vertical deformation for the different well locations. 
Using lagged Pearson correlation coefficient (ρ) analysis, we found a 

higher correlation (ρ = 0.5 ± 0.2) between the time series of the VLM and 
groundwater-level changes in the confined aquifers (Fig. 3b,d). A t-test 
of significance at an alpha value of 0.01 also showed that the obtained 
correlation is statistically significant (p value = 0.00). However, we 
find a lower correlation for the unconfined aquifers (ρ = 0.2 ± 0.3) and 
the unknown aquifers (ρ = 0.1 ± 0.2) (Fig. 3b), which were statistically 
insignificant (p value = 0.02). The exception are some wells in San Diego 
that lie above the confined wells (Fig. 3b,d). Therefore, we suggest that 
changes in the pore pressure, and consequently the stress acting on the 
aquifer matrix, control the temporal dynamics of vertical deformation 
of confined aquifers and, in a few cases, the unconfined aquifers15,35,36.

To investigate the dependence of surface elevation changes  
on human-induced groundwater fluctuations, we modeled the  
subsidence–groundwater decline relationship using a copula frame-
work (Methods). We applied five different copula functions (Gaussian, 
t, Clayton, Frank and Gumbel) to model the dependence structure in 
wells with the highest positive correlation in five cities with confined 
aquifer layers: New York; Washington, DC; Houston; Memphis and 
San Diego. Using the best-fitting copula function for each well, we 
calculated the conditional probability of cumulative displacement 
exceeding a threshold of −1 mm (that is, displacement < −1 mm) as a 
function of groundwater-level changes (Fig. 3c and Supplementary 
Figs. 2–6). The distinct shapes of the curves reflect differences in how 
groundwater use modulates VLM across the studied cities (Fig. 3c). 
All curves indicate a higher conditional probability (or likelihood) 
of subsidence when groundwater levels decline below the long-term 
mean. However, the sensitivity of subsidence to hydraulic changes 
varies across cities. The steeper probability curves for New York and 
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San Diego, and their relatively higher probability for land subsidence 
under negative groundwater-level changes, reflects a greater depend-
ence of subsidence on groundwater-level decline. In contrast, the 
gradual slope and relatively lower maximum amplitude for respec-
tive conditional probabilities in Washington, DC, and Houston indi-
cates that land elevation in these cities is less sensitive to hydraulic 
changes within the confined layers. Furthermore, we find a moderate 
to high probability (>50%) for subsidence exceeding 1 mm in New York,  
Memphis and San Diego if groundwater levels decline to half the lowest 
measured levels (Fig. 3c). These differences may be influenced by local 
geological conditions (for example, aquifer structure, aquifer material 

properties) or human interventions (for example, historical extraction 
rates). For example, in San Diego’s high-permeability alluvial aquifer 
system (San Diego Formation), rapid pressure equilibration due to 
high hydraulic diffusivity leads to a faster deformation response of 
the land surface to groundwater depletion. In contrast, Washington, 
DC’s fractured Piedmont bedrock aquifer exhibits subdued subsidence 
responses due to low diffusivity, which slows pressure equilibration. 
Such geological heterogeneity, compounded by human factors such as 
historical extraction rates, explains why cities such as San Diego experi-
ence greater subsidence risks during groundwater decline compared 
to systems with slower hydraulic feedback. These results help us to 

Memphis

New York
Columbus

a

–6

–6

–4

–4

–2

–2

0

0

2

2

4

4

6

6

Groundwater level trend (m per year)

Groundwater trend 
decline

Groundwater trend 
increase

La
nd

 u
pl

ift
La

nd
 s

ub
si

de
nc

e

Ve
rt

ic
al

 la
nd

 m
ot

io
n 

(m
m

 p
er

 y
ea

r)

1:1

Washington, DC

Houston

Confined aquifers

Unconfined aquifers

Unknown aquifers
ρ = 0.87 (R2 = 76.0%) 
ρ = 0.43 (R2 = 18.3%) 
ρ = 0.13 (R2 = 1.9%) 

San Diego

b

c

d

Cities

W
el

ls

1 2 3 4 5

5

15

10

5

15

10

5

15

10

6 7 8 9 10 11 12 13

5, San Antonio; 6, San Diego; 7, Austin; 8, Columbus;
9, Indianapolis; 10, Washington, DC; 11, Portland;
12, Detroit; 13, Memphis

1, New York; 2, Chicago; 3, Houston; 4, Philadelphia;

Ve
rt

ic
al

 d
is

pl
ac

em
en

t (
m

m
) D

epth to w
ater level (m

)

Year

–18

2017 2018 2019 2020 2021

20172016 2018 2019 2020 2021

2018 2019 2020 2021

25

24

23

22

21

30

20

10

0

5

4

3

–5

0

5

10

15

–12

–6

0

–30

–20

–10

10

0

0

Pearson correlation coe�icient (ρ)

–1 1 NDρ = 0.1 ± 0.2

Unknown aquifers
N = 21

ρ = 0.2 ± 0.2

Unconfined aquifers
N = 42

ρ = 0.5 ± 0.2

Confined aquifers
N = 27

InSAR displacement time series Confined aquifer time series Unconfined aquifer time series

ρ = 0.51

Houston, TX
USGS site: 295449095084101 

ρ = 0.69

New York, NY
USGS site: 404416073491801 

ρ = 0.92 ρ = 0.86

San Diego, CA
USGS site:
323527117050002(3) 

Time lag: 30 days

Time lag: 15 days

Time lag: 48 days

–1.0 –0.5 0 0.5 1.0

Normalized groundwater level (nGWL)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
on

di
tio

na
l p

ro
ba

bi
lit

y 
(V

LM
 <

 –
1|n

G
W

L 
= 
x)

62.4%
P(VLM < –1|nGWL = –0.5)

40.1%
48.3%
52.6%
68.5%

New York
Washington, DC
Houston
Memphis
San Diego

0.68
0.29
0.45
0.53
0.86C

or
re

la
tio

n

Fig. 3 | Contribution of groundwater withdrawal to land subsidence in the 
United States. a, Linear regression analysis of groundwater-level trends and 
VLM across 13 US cities. The blue, yellow and red lines are the regression lines 
for confined, unconfined and unknown aquifers, respectively. b, Correlation 
between time series of VLM and changes in groundwater levels for confined, 
unconfined and unknown aquifers. Each square represents a single well in the 
respective city. ND, wells with no data, where the wells are more than 50 m away 
from an InSAR pixel. c, Probability curves showing the likelihood of vertical 
displacement exceeding −1 mm (that is, displacement < −1 mm) in response to 

groundwater-level changes in confined aquifers across 5 US cities: New York;  
Washington, DC; Houston; Memphis and San Diego. Groundwater levels 
have been normalized across cities to account for variations in well depths. 
The dashed black vertical line represents the probability of exceeding −1 mm 
displacement at half the maximum groundwater decline observed in each city 
(P[VLM < −1|nGWL = −0.5], where nGWL refers to the normalized groundwater 
level). d, Comparison of groundwater level and InSAR displacement for wells 
in Houston, New York and San Diego. The location of the wells for each city is 
summarized in Supplementary Table 7.
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identify the fingerprint of anthropogenic land subsidence in several 
US cities, offering crucial insights into the localized impacts of human 
activities on subsidence in these cities.

Risk of urban subsidence to US infrastructure
One of the most harmful yet less visible effects of urban land subsidence 
is the potential damage to buildings, foundations and infrastructure, 
primarily caused by differential land motion37,38. Unlike flood-related 
subsidence hazards, where risks manifest only when high rates of 
subsidence lower the land elevation below a critical threshold13,14,  
subsidence-induced infrastructure damage can occur even with minor 
changes in land motion12,37. The latent nature of this risk means that 
infrastructure can be silently compromised over time, with damage 
only becoming evident when it is severe or potentially catastrophic. 
This risk is often exacerbated in rapidly expanding urban centers.

To investigate the hazards to buildings associated with land subsid-
ence across the 28 US cities, we estimated the angular distortion (β), 
strain between two adjacent points due to differential settlement over 
a given 25-year period39 (Methods). On the basis of previous studies37,38 
and standard geotechnical engineering practices40,41, we categorized 
the angular distortion hazard into four levels: low (β < 0.02°), medium 
(0.02° ≤ β < 0.04°), high (0.04° ≤ β ≤ 0.12°) and very high (β > 0.12°). 
We estimate that a total land area of 12,000; 862; 138 and 1.3 km2 are 

affected by low, medium, high and very high angular distortion, respec-
tively (Extended Data Figs. 3, 6 and 7 and Supplementary Table 4). 
Although the high and very high-hazard zones affect only about 1% 
of the total land area in the 28 cities (Supplementary Table 4), these 
areas represent critical zones within the urban landscape where the 
structural integrity of infrastructure may be compromised37,39,40. Gener-
ally, angular distortion over 0.06° (high and very high-hazard zones) 
is likely to cause the development and/or propagation of structural 
deterioration, such as the fracturing and cracking of infrastructure, 
depending on the type of building or infrastructure37,38,40. Additionally, 
we find that 31.9% and 51.8% of high- and very high-hazard zones occur 
in areas experiencing uplift (Extended Data Fig. 8), emphasizing that 
infrastructure angular distortion hazards are primarily associated with 
differential land motion and not subsidence hotspots42.

Next, we evaluated the risk to the buildings associated with urban 
differential subsidence using a risk matrix. The risk matrix associates 
angular distortion hazards with building densities as an indicator for 
the risk likelihood to buildings in five classes: very low, low, medium, 
high and very high (Methods). Overall, we assessed the risk for a com-
bined 5.6 million buildings across all cities. Our analysis shows that 
across the cities, the risk to buildings is generally low, with the major-
ity (>99%) of the buildings classified as low to medium risk (Fig. 4, 
Extended Data Figs. 3, 9 and 10, and Supplementary Table 4). The high 
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Fig. 4 | Risk of subsidence to infrastructure in major US cities. a–h, Spatial 
risk maps of buildings in New York (a), Seattle (b), Detroit (c), Memphis (d), 
Fort Worth (e), Austin (f), Houston (g) and San Antonio (h). The risk maps for 
all cities are shown in Extended Data Figs. 3, 9 and 10. The risks are categorized 
into five classes: very low (VL), low (L), medium (M), high (H) and very high (VH). 

i, Distribution of buildings exposed to different risk levels in each city. Note 
that the bars only show the H and VH risk categories. Supplementary Table 4 
summarizes the distribution of risks for each city. Background images in a–h 
from streets-dark ESRI, HERE, Garmin, Foursquare, METI/NASA, USGS.
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and very-high-risk areas include more than 29,000 buildings from the 
28 US cities (Fig. 4i). In terms of the ratio of high and very-high-risk 
buildings to the total buildings in each city, San Antonio (1 in 45), Austin 
(1 in 71), Fort Worth (1 in 143) and Memphis (1 in 167) have the highest 
proportions (Supplementary Table 4). Additionally, San Antonio, 
Austin and Houston contribute more than 82% of the buildings at very 
high risk, having 1,515; 706 and 376 buildings, respectively.

However, it is crucial to recognize that the occurrence of build-
ings in high and very-high-risk zones does not immediately imply 
failure. Other considerations, such as the soil type, foundation mate-
rials, construction materials, construction practices, building type, 
building age, building maintenance or existing hazards (for example, 
seismic hazards, extreme weather events and flooding) are impor-
tant for assessing the overall risk to buildings38,40,41. Nevertheless, 
these high and very-high-risk zones in the cities indicate areas where 
subsidence-derived stressors may unfavorably tilt buildings and other 
infrastructure towards the higher end of the risk spectrum. Within the 
context of a socioeconomic framework, quantitative spatial hazard/
risk information are essential in urban planning and land-use zoning, 
helping local policymakers to identify areas where new development 
should proceed or be restricted due to existing risk levels37.

Addressing urban land subsidence
How can we effectively respond to urban land subsidence? Is it possible 
to prevent cities from sinking? While there is no panacea for urban 
land subsidence, effective responses generally involve mitigation and 
adaptation, akin to strategies for addressing climate change6 (Fig. 5).

A crucial first step is identifying location-specific drivers as anthro-
pogenic causes can be mitigated, whereas subsidence caused by natural 
processes often necessitates adaptation3,4,6 (Fig. 5). However, separat-
ing these drivers is challenging as multiple subsidence mechanisms are 

sometimes superimposed at a singular location2. For example, natural 
sediment compaction in many coastal and delta cities is compounded 
by upstream dam construction, sand mining, excessive groundwater 
withdrawal and hydrocarbon extraction, accelerating subsidence 
rates43,44. In other non-coastal urban cities, where GIA or tectonics 
processes drive subsidence, anthropic activities such as infrastruc-
tural loading and groundwater exploitation contribute to subsidence. 
In these areas, targeted mitigation through strategic dam planning, 
managed aquifer recharge and resource extraction policies may be 
useful to control, pause or even reverse subsidence despite the existing 
background rates6,44–46. To be effective, proposed mitigation solutions 
must be technically viable and aligned with community needs, balanc-
ing the trade-offs between subsidence risks and resource access47.

When mitigation is insufficient, adaptation measures tailored 
to address the local vulnerabilities become essential to minimize 
impacts3,6. For example, in coastal cities where land subsidence 
amplifies sea-level rise impacts (for example, Houston; San Diego;  
Washington, DC; Boston; New York), sustainable adaptation may 
involve protection, accommodation, retreat and advance47. Cities 
with pluvial and fluvial flooding risks (for example, Memphis, Philadel-
phia, Chicago, Columbus, Charlotte, Indianapolis and Los Angeles)48 
may require new and upgraded structural protection, raised land, 
improved drainage systems and green infrastructure6,48,49. For cities 
susceptible to subsidence-induced infrastructure hazards, such as 
the cities highlighted in this study, adaptation efforts should focus on 
retrofitting existing infrastructure, integrating subsidence sensitivity 
into construction codes, limiting infrastructure loading and enhanced 
monitoring of critical infrastructure6,37,38,50 (Fig. 5).

Ultimately, a robust and sustainable mitigative and adaptive 
framework should encompass continuous monitoring, stakeholder 
collaboration and flexible mitigation and adaptive management plans 
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that evolve with changing conditions (Fig. 5). Regardless of the pathway 
a city chooses, any effective mitigation and adaptation effort must be 
targeted to the dominant subsidence driver in each city, proportional 
to local vulnerabilities, and incorporate a multifaceted approach.

Methods
Selection criteria for US cities and population dataset
This study focused on the 28 most populous US cities as defined by 
the 2020 US census data. The combined population of the 28 cities 
is 39 million people (Supplementary Table 2), representing ~12% of 
the current US population. Geographically, the cities were selected 
from 19 different states; the only states with more than one city are 
Texas (six cities), California (four cities) and Tennessee (two cities). 
Among the 28 cities, 11 are coastal, eight are riparian and nine are 
inland cities. Coastal cities, which are located directly along the coast 
or are subject to tidal influences and sea-level rise, include New York,  
NY; Los Angeles, CA; Houston, TX; Philadelphia, PA; San Diego, CA; 
Jacksonville, FL; San Francisco, CA; Seattle, WA; Washington, DC; 
Boston, MA; and Portland, OR. Riparian cities situated close to rivers 
include San Antonio, TX (San Antonio River); Austin, TX (Colorado 
River); Columbus, OH (Scioto River); Indianapolis, IN (White River); 
Nashville, TN (Cumberland River); El Paso, TX (Rio Grande); Detroit, 
MI (Detroit River) and Memphis, TN (Mississippi River). Inland cities, 
not situated along the coast or near major rivers include Chicago, IL; 
Phoenix, AZ; Dallas, TX; San Jose, CA; Fort Worth, TX; Charlotte, NC; 
Denver, CO; Oklahoma City, OK and Las Vegas, NV. Note that Houston, 
TX (Buffalo Bayou); Philadelphia, PA (Delaware River) and Washington, 
DC (Potomac River), are situated close to major rivers and not directly 
on the coast but are considered coastal due to the influences of tides 
on the rivers and sea-level-rise impacts on these cities. Of the 28 US 
cities, 13 are among the 20 fastest-growing cities in the United States, 
with population increases between 10% and 26% from 2010 to 2020 
(ref. 51), indicative of urban population expansion and infrastructure 
development trends in recent years. A literature review conducted for 
the 28 cities analyzed here shows that prior vertical land motion (VLM) 
studies exist for only 11 cities (predominantly coastal), highlighting a 
systematic lack of spatially resolved datasets for inland and riparian 
cities nationwide (Supplementary Table 1).

To estimate the population for each US city, we used the 2020 
open-access topologically integrated geographic encoding and refer-
encing (TIGER) system demographic and economic data from the US 
Census Bureau52. This dataset provides detailed population estimates 
for each city, subdivided into census blocks.

SAR analysis
To generate high spatial resolution maps of VLM for the 28 US cities, 
we applied advanced multitemporal wavelet-based interferometric 
synthetic aperture radar (WabInSAR) algorithm53–55 to 2,512 SAR images 
acquired in ascending orbit of Sentinel-1 A/B satellites between 2015 
and 2021 (Supplementary Table 5). To this end, we generated ~400 
sets of high-quality interferograms for each city (12,311 total inter-
ferograms) using the GAMMA software56 within a maximum temporal 
baseline of 700 days and a perpendicular baseline of 500 m. To improve 
the signal-to-noise ratio and enable precise and detailed observations 
of surface deformation, we applied a multi-looking factor of 12 × 2 in 
the range and azimuth directions, respectively, to obtain an average 
ground resolution of ~28 m. We performed accurate co-registration 
of the SAR images using the satellite’s precise ephemeris data, Shut-
tle Radar Topography Mission 30-m Digital Elevation Model and an 
enhanced spectral diversity algorithm57. We discarded pixels from the 
distributed scatterers with a coherence of less than 0.7 and permanent 
scatterers with amplitude dispersion of more than 0.3, following Lee 
and Shirzaei55. Next we employed a modified 2D minimum cost flow 
phase unwrapping algorithm to estimate absolute phase changes of 
the sparse retained (that is, elite) pixels in each interferogram54,58. 

The unwrapped interferograms are corrected for the effect of orbital 
error59, topography-correlated atmospheric phase delay and spatially 
uncorrelated topography error by applying a suite of wavelet-based 
filters53. We applied a reweighted least squares optimization to estimate 
the time series and rate of land motion along the satellite’s line of sight 
(LOS) for each pixel, using a zero-velocity local reference point selected 
from stable areas outside the city boundary.

We assume most horizontal motions are of a spatially smooth pat-
tern that can be estimated and removed using a polynomial. This is a 
valid assumption because there are no active faults within study areas, 
and no major earthquakes occurred within the study period to affect 
the observed LOS velocities. Thus, the remainder of the LOS signal is 
mainly due to vertical deformation. We projected the corrected LOS 
velocity for each pixel (LOSi) in the vertical direction to obtain the VLM 
following equation (1):

VLMi =
LOSi
cosθi

(1)

where cos θi is the local incidence angle for each pixel. The obtained 
VLM is with reference to the local reference point for each city. To trans-
form the VLM from a local to a global reference frame, we employed 
a global VLM model60 and applied an affine transformation to align 
the VLM rates to the IGS14 global reference frame61,62. Extended Data 
Figs. 1–3 show the final VLM maps in the IGS14 reference frame for the 
28 cities63.

To examine the quality of our results, we evaluated the standard 
deviation associated with the LOS velocities and validated the VLM 
rates by comparing them with global navigation satellite systems 
(GNSS) data. The spatial maps for all cities indicate that the standard 
deviation values are below 1 mm per year, suggesting high precision 
measurements (Supplementary Figs. 7–9). To validate the accuracy of 
the VLM rates, we compared the global VLM rates with observations 
from 154 GNSS stations in 28 cities obtained from the Nevada Geodetic 
Laboratory64. The comparison shows an 88% correlation (R2 value), 
with a mean difference of 0.1 mm per year and a standard deviation of 
1.1 mm per year (Supplementary Fig. 10).

Subsidence exposure analysis
To estimate exposure to subsidence, we use the area-weighted average 
subsidence rate, which better represents the spatially heterogeneous 
nature of land subsidence across cities. Unlike a simple average, which 
treats all locations equally, this approach ensures that larger subsid-
ing areas contribute more to the final estimate, minimizing bias from 
localized hotspots with extreme rates.

To this end, each city was divided into a grid of spatial units, each 
with a corresponding VLM rate. The area-weighted average subsidence 
rate ( ̄Sw) was calculated using equation (2):

̄Sw =
∑n

i=1 (Si × Ai)
∑n

i=1 Ai
(2)

where Si is the VLM rate (mm per year) and Ai is the area (km2). This 
method ensures that subsidence estimates reflect the total affected 
area (for example, widespread sinking zones), rather than being skewed 
by localized hotspots (small areas with extreme rates).

To quantify the population exposed to urban subsidence, we used 
the 2020 census data to estimate the population affected by various 
subsidence rates. For each census block, we classified the population 
as exposed to subsidence based on the calculated median subsidence 
rate for the InSAR pixel in the census block. We classified the subsid-
ence rates (mm per year) into five categories in order of increasing 
subsidence hazard severity: VLM ≥ 0 (not exposed to subsidence), 
−3 ≥ VLM < 0, −5 ≥ VLM < −3, −10 ≥ VLM < −5 and VLM < −10. Figure 2 
shows the estimated population exposure for the 28 US cities.
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Infrastructure risk analysis
Infrastructure risk has emerged as a critical concern in the United 
States due to both historical and recent building failures. A synthesis 
of collapsed buildings in the United States documented 225 incidences 
of building collapse between 1989 and 2000 (ref. 65). While mainte-
nance deficiencies, extreme events, construction and design errors 
are identified as the major causes of these collapses, about 2% of the 
collapsed buildings were directly attributable to subsidence-related 
issues, including foundation and soil settlement. Furthermore, another 
30% (60 out of 225) of these failures were classified as having unknown 
causes. More recently, three building failures were reported in Miami, 
FL ( June 2021); New York City, NY (April 2023) and Davenport, IA (May 
2023), resulting in over 100 casualties66. The risk to infrastructure 
depends on intrinsic hazards, including the type of construction mate-
rial age and maintenance state of the infrastructure; extrinsic hazards, 
such as soil type and foundation materials; and subsidence-related 
hazards, such as relative rotations, horizontal strain, total and dif-
ferential settlement37–39,67. Often, a combination of these factors can 
compromise the integrity of infrastructures over time, increasing the 
risk of failure. Given the long-term and prevalent nature of subsidence 
hazards in US cities, along with their latent nature, it is probable, even 
expected, that land subsidence may have played an underrecognized 
role in past infrastructure failures. In this study, we focus on this sub-
sidence-related hazard in major US urban cities and their impact on 
urban infrastructure and property37–39.

To estimate the risk to infrastructure due to land subsidence in US 
cities, we used a risk matrix, which associates the severity of a hazard 
with the exposure and vulnerability of the elements at risk. Here we 
adopt the risk matrix, which combines differential settlement hazard 
with the building densities to produce varying risk levels for each 
city categorized as very low—VL, low—L, medium—M, high—H and 
very high—VH37,38,67,68 (Supplementary Fig. 11). The hazard associated 
with differential settlement was evaluated by calculating the angular 
distortion (β), defined by equation (3) as the ratio of the differential 
settlement (Δδ) of adjacent pixels (28 m) to their horizontal distance (l).

β = Δδ
l

(3)

The calculated β values were classified into four hazard severity lev-
els: low (β < 0.02°), medium (0.02° ≤ β < 0.04°), high (0.04° ≤ β ≤ 0.12°) 
and very high (β > 0.12°) based on predefined criteria following geo-
technical engineering standards for allowable settlements on buildings 
and previous studies37–40. The hazard categories indicate the likelihood 
of structural damage, ranging from aesthetic issues (for example, 
cracks, uneven floors and misaligned doors and windows) to extensive 
structural failures (for example, foundation settling and collapse of 
buildings)37,38,40,68. The total land area affected by differential subsid-
ence hazards in US cities is summarized in Supplementary Table 4, 
and the spatial maps for β are shown in Extended Data Figs. 3, 6 and 763.

Whereas we adopt this commonly applied differential settlement 
hazard categorization, it is important to note that the critical threshold 
for angular distortion (βcrit) varies based on the type of construction 
materials, foundation type and soil properties. For example, brick-
bearing walls or buildings with steel or reinforced concrete frames 
may tolerate βcrit up to 0.19° before structural damage occurs40,41,69,70, 
whereas brick walls, beams and columns or encased steel frames exhibit 
moderate to severe damage at β greater than 0.38° (refs. 40,71). In 
contrast, structures built on sand or soft clay may fail at much lower 
thresholds (β > 0.02°)39. To assess cumulative impacts, we assumed a 
linear rate of VLM over a 25-year period, consistent with short-term 
subsidence projections in urban environments2,38. However, we note 
the lack of spatially resolved building damage data in US cities, which 
limits our ability to cross validate or directly correlate identified 
high-hazard/high-risk zones with documented structural damage.  

Future studies should address this gap by integrating high-resolution 
building footprint datasets to compute β or other infrastructure 
hazard evaluation metrics (for example, deflection ratios and relative 
building rotation) at the scale of individual buildings. Pairing these 
data with geotechnical classifications (for example, soil type, bedrock 
depth) and foundation engineering metadata (for example, friction 
piles, raft or bedrock-anchored designs) would enable structure-
specific risk assessments. Despite this limitation, our analysis offers 
a structured framework for highlighting areas of potential concern 
and prioritizing zones within cities for further localized investiga-
tions that could validate these risk assessments and guide targeted 
mitigation efforts.

For the building densities, we extracted the building base outline 
developed by Microsoft72. The building footprint database was cre-
ated using a semantic segmentation pixel recognition scheme and 
polygonization, which accurately delineates the shape and size of 
buildings for each US city. For an 80-m grid, we assigned each grid a 
classification of low (building densities < 518), medium (518 ≥ building 
densities < 3,300) and high (building densities ≥ 3,300) housing densi-
ties (in housing units per km2) based on the 2020 urban areas density 
thresholds proposed by the US Census Bureau73. Figure 4 and Extended 
Data Figs. 3, 9 and 10 show the spatial risk maps created by combining 
the building density and β. Supplementary Table 4 summarizes the 
number of buildings for each risk category in the US cities.

Groundwater extraction and groundwater-level dataset
For the groundwater extraction data, we obtained estimates of 
groundwater withdrawal from aquifers available on a county basis for  
32 counties relevant to this study74,75. The dataset includes ground-
water withdrawal estimates from 66 principal aquifers and other 
non-principal aquifers during 2015 for various categories by differ-
ent uses (public supply, domestic, irrigation, thermoelectric power, 
industrial, mining, livestock and aquaculture water use). A summary 
of the 32 counties and the categorized groundwater use is provided 
in Supplementary Table 6.

To estimate the change in groundwater level in the US cities, we 
collected 90 time series of daily water level measurements from the 
US Geological Survey (USGS)76. The groundwater data were available 
for 13 cities, including 27 confined aquifers, 42 unconfined aquifers 
and 21 wells with no aquifer labels, termed unknown aquifers (Sup-
plementary Table 7). The location, depths and aquifer types for the 
groundwater wells are summarized in Supplementary Table 7. We used 
Theil–Sen regression slopes (equation (4)), which provides a robust 
estimation of the median slope of the data, to calculate the rate of 
change in groundwater level ( dh

dt
) for the same time period as the InSAR 

time series (2015–2021):

(dhdt )
= median (

h j − hi
t j − ti

) for 1 ≤ i < j ≤ N (4)

where h and t are the groundwater levels and times, respectively77,78.
To evaluate the relationship between groundwater-level changes 

and changes in land motion, we averaged the non-glacial isostatic 
adjustment (GIA) VLM rates from InSAR pixels within a 50-m radius of 
the well locations and compared them with the dh

dt
 for each groundwater 

well. Only 46 of the 90 wells were located within a 50-m radius of the 
InSAR pixels and could be compared with the VLM rates. To estimate 
the non-GIA VLM rates, we used the ICE-6G-D GIA model29 to estimate 
and exclude the GIA contributions at the InSAR pixels for each US city. 
The distributions of groundwater-level changes and VLM rates across 
different aquifer types shows a narrow variance (σ = 0.2 m per year for 
groundwater-level changes, σ = 0.06–0.3 mm per year for VLM) and a 
near-zero cluster value for the unknown and unconfined aquifers 
(Extended Data Fig. 5). In contrast, confined aquifers exhibit broader 
distributions (σ = 1.1 m for groundwater-level changes, σ = 0.4 mm per 
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year for VLM), indicative of a spatially heterogeneous response and a 
fit informed by the range of data distribution rather than a few extreme 
values or clustered data points. To assess the degree of correlation 
between the temporal dynamics of groundwater levels and vertical 
deformation, we computed the lagged correlation matrix between the 
detrended time series of the groundwater level and the VLM data, given 
by equation (5):

ρ (k) =
∑N−K

i=1 (Xi − X̄) (Yi−k − ̄Y)

√∑N−k
t=1 (Xi − X̄)2√∑N−K

i=1 (Yi−k − ̄Y)2
(5)

where ρ(k) is the Pearson correlation coefficient at lag k, Xi and Yi are 
the time series of groundwater level and VLM data at time i, respec-
tively, and X̄  and ̄Y  are the mean values. The correlation coefficient (ρ) 
ranges from −1 to 1, indicating a perfect positive to a perfect negative 
correlation. For each time series, we presented the maximum lagged 
correlation value.

To estimate the bivariate dependence of VLM on groundwater 
levels in US cities, we statistically modeled their joint probability 
using copula functions. We applied the Multivariate Copula Analy-
sis Toolbox79. Here we focused our analysis on wells with the highest 
positive correlation in five cities (New York; Washington, DC; Houston;  
Memphis and San Diego) with confined aquifer layers. For each city, we 
tested five different copula functions—Gaussian, t, Clayton, Frank and 
Gumbel—and estimated the parameter values for each copula within a 
95% confidence interval using Markov Chain Monte Carlo simulations. 
To determine the best fit, we ranked copula models based on multi-
ple goodness-of-fit criteria, including maximum likelihood, Akaike 
Information Criterion and Bayesian Information Criterion (BIC). The 
best-fit copula for each city was selected based on the lowest BIC value. 
The best-fit copula varied by city, reflecting differences in depend-
ence structures. The full ranking (Akaike Information Criterion/BIC) 
is detailed in Supplementary Table 8. Next, using the optimal copula 
model’s type and parameter values, we resampled a bivariate dataset of 
100,000 members, which reflects the statistical dependence structure 
between VLM and groundwater levels as captured by the copula model, 
and mapped the generated copula samples back to their original data 
ranges (that is, VLM and groundwater levels).

To validate the copula model performance, we qualitatively and 
quantitatively compared the empirical data against simulations from 
both the best- and worst-performing copula models (Supplementary 
Figs. 2–6). For each city, we juxtaposed the original groundwater level 
and VLM data with resampled data generated from the best-fit (blue 
points and lines, for example, t copula in New York) and worst-fit 
(green points and lines, for example, Gumbel copula in New York) 
copula models. The marginal distributions highlight disparities in 
their ability to replicate observed patterns, with the best-performing 
copula for each city aligning more closely with the empirical data, 
while the worst-performing models exhibit systematic deviations, par-
ticularly in tail regions (Supplementary Figs. 2–6). The reconstructed 
time series further illustrates this contrast, as the best-performing 
model (ρ = 0.3–0.9) captures groundwater–VLM temporal trends 
compared to the poorly fitting alternative (ρ = 0.1–0.5) (Supplemen-
tary Figs. 2–6).

From the resampled dataset, we evaluated the conditional 
probability of VLM occurring under varying groundwater levels as 
P(VLM|GWL = x. We then integrated the total conditional probability 
of subsidence exceeding −1 mm (that is, VLM < −1 mm) as P(VLM < 
−1|GWL = x for each value of groundwater levels, normalized between 
minimum and maximum values (Fig. 3c).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The VLM rate, angular distortion and risk datasets for the 28 US cit-
ies are available through the Virginia Tech repository at https://doi.
org/10.7294/27606942. The supplementary table for this paper is 
accessible at https://doi.org/10.7294/27606942. The Sentinel-1 data 
used in this study are publicly available from the Alaska Satellite Facility 
and can be accessed at https://asf.alaska.edu/. The population dataset 
is available from the US Census Bureau at https://www.census.gov/. The 
groundwater data can be obtained from USGS at https://waterdata.
usgs.gov/nwis/gw.

Code availability
The WabInSAR algorithm version 5.6 used to perform the SAR analysis 
is available at https://www.eoivt.com/software.
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Extended Data Fig. 1 | Spatial Vertical Land Motion (VLM) for 12 Most 
Populated US Cities. Spatially varying VLM for (a) New York, NY, (b) Los Angeles, 
CA, (c) Chicago, IL, (d) Houston, TX, (e) Phoenix, AZ, (f) Philadelphia, PA, (g) 
San Antonio, TX, (h) San Diego, CA, (i) Dallas, TX, (j) San Jose, CA, (k) Austin, 

TX, (l) Jacksonville, FL. Positive VLM (green-purple hues) indicates elevation 
gain (uplift), while negative VLM (yellow-orange-red hues) indicates elevation 
loss (land subsidence). Background images: streets-dark ESRI, HERE, Garmin, 
Foursquare, METI/NASA, USGS.

http://www.nature.com/natcities
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Extended Data Fig. 2 | Spatial Vertical Land Motion (VLM) across 12 US Cities. 
Spatially varying VLM for (a) Fort Worth, TX, (b) Columbus, OH, (c) Indianapolis, 
IN, (d) Charlotte, NC, (e) San Francisco, CA, (f) Seattle, WA, (g) Denver, CO,  
(h) Washington, DC, (i) Nashville, TN, (j) Oklahoma City, OK, (k) El Paso, TX,  

(l) Boston, MA. Positive VLM (green-purple hues) indicates elevation gain (uplift), 
while negative VLM (yellow-orange-red hues) indicates elevation loss (land 
subsidence). Background images: streets-dark ESRI, HERE, Garmin, Foursquare, 
METI/NASA, USGS.
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Extended Data Fig. 3 | Spatial Vertical Land Motion (VLM), Angular Distortion 
Hazards, and Risk for US Cities. Spatially varying VLM for (a) Portland, OR, 
(b) Las Vegas, NV, (c) Detroit, MI, (d) Memphis, TN. Spatially varying angular 
distortion hazard for (e) Portland, OR, (f) Las Vegas, NV, (g) Detroit, MI, (h) 
Memphis, TN. The angular distortion hazard is estimated using Eq. (3). Risk of 

infrastructure damage for (i) Portland, OR, (j) Las Vegas, NV, (k) Detroit, MI,  
(l) Memphis, TN. The risk of infrastructure damage is created using the risk 
matrix in Supplementary Fig. 11. Background images: streets-dark ESRI, HERE, 
Garmin, Foursquare, METI/NASA, USGS.

http://www.nature.com/natcities
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Extended Data Fig. 4 | The Influence of Glacial Isostatic Adjustment (GIA) on Urban Subsidence in US Cities. The GIA data is derived from the ICE-6G-D model29. 
National and state boundaries are based on public domain vector data by World DataBank (https://data.worldbank.org/) generated in MATLAB.
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Extended Data Fig. 5 | Relationship Between Groundwater Trends and Vertical 
Land Motion (VLM) Across US Cities. Plot of groundwater level trends and VLM 
for 13 US cities, with confined, unconfined, and unknown aquifers represented 
by blue, yellow, and red markers, respectively. The density plots along the axes, 

color-coded to the aquifer type, illustrate the distributions of groundwater 
trends and VLM rate. This figure expands on Fig. 3a to highlight the dataset’s 
distribution.
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Extended Data Fig. 6 | Spatial Angular Distortion for 12 Most Populated US 
Cities. Spatially varying angular distortion hazard for (a) New York, NY, (b) Los 
Angeles, CA, (c) Chicago, IL, (d) Houston, TX, (e) Phoenix, AZ, (f) Philadelphia, PA, 
(g) San Antonio, TX, (h) San Diego, CA, (i) Dallas, TX, (j) San Jose, CA, (k) Austin, 

TX, (l) Jacksonville, FL. The angular distortion hazard is estimated using  
Eq. (3). Background images: streets-dark ESRI, HERE, Garmin, Foursquare,  
METI/NASA, USGS.

http://www.nature.com/natcities
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Extended Data Fig. 7 | Spatial Angular Distortion across 12 US Cities. Spatially 
varying angular distortion hazard for (a) Fort Worth, TX, (b) Columbus, OH,  
(c) Indianapolis, IN, (d) Charlotte, NC, (e) San Francisco, CA, (f) Seattle, WA,  
(g) Denver, CO, (h) Washington, DC, (i) Nashville, TN, (j) Oklahoma City, OK,  

(k) El Paso, TX, (l) Boston, MA. The angular distortion hazard is estimated using  
Eq. (3). Background images: streets-dark ESRI, HERE, Garmin, Foursquare,  
METI/NASA, USGS.

http://www.nature.com/natcities


Nature Cities

Article https://doi.org/10.1038/s44284-025-00240-y

Extended Data Fig. 8 | Influence of Subsidence on Infrastructure Risks. Comparison of the vertical land motion (VLM) versus adjacent VLM and the associated risk 
for US cities.
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Extended Data Fig. 9 | Estimated Risk to Infrastructure 12 Most Populated  
US Cities. Risk of infrastructure damage for (a) New York, NY, (b) Los Angeles,  
CA, (c) Chicago, IL, (d) Houston, TX, (e) Phoenix, AZ, (f) Philadelphia, PA,  
(g) San Antonio, TX, (h) San Diego, CA, (i) Dallas, TX, (j) San Jose, CA, (k) Austin, 

TX, (l) Jacksonville, FL. The risk of infrastructure damage is created using the risk 
matrix in Supplementary Fig. 11. Background images: streets-dark ESRI, HERE, 
Garmin, Foursquare, METI/NASA, USGS.
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Extended Data Fig. 10 | Estimated Risk to Infrastructure across 12 US Cities.  
Risk of infrastructure damage for (a) Fort Worth, TX, (b) Columbus, OH,  
(c) Indianapolis, IN, (d) Charlotte, NC, (e) San Francisco, CA, (f) Seattle, WA,  
(g) Denver, CO, (h) Washington, DC, (i) Nashville, TN, (j) Oklahoma City, OK,  

(k) El Paso, TX, (l) Boston, MA. The risk of infrastructure damage is created using 
the risk matrix in Supplementary Fig. 11. Background images: streets-dark ESRI, 
HERE, Garmin, Foursquare, METI/NASA, USGS.

http://www.nature.com/natcities
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis Land deformation was processed using GAMMA Remote Sensing software v1.6 (https://gamma-rs.ch/gamma-software) and WABInSAR 
algorithm version 5.6, which can be obtained here: https://www.eoivt.com/software. The copula analysis was carried out using  
Multivariate Copula Analysis Toolbox (MvCAT) version 02.01, which can be obtained here: https://www.mathworks.com/matlabcentral/
fileexchange/69217-multivariate-copula-analysis-toolbox-mvcat.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The vertical land motion (VLM) rate, angular distortion, and risk datasets for the 28 US cities are available through the Virginia Tech repository at https://
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doi.org/10.7294/27606942. The Sentinel-1 data used in this study are publicly available from the Alaska Satellite Facility (ASF) and can be accessed at https://
asf.alaska.edu/. The population dataset is available from the US census bureau (https://www.census.gov/). The groundwater data can be obtained from the US 
Geological Survey (USGS) (https://waterdata.usgs.gov/nwis/gw).

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We processed synthetic aperture radar (SAR) datasets for 28 most populated cities in the US to measure the rate of VLM across the 
urban landscape. We investigated the role of groundwater withdrawal on land subsidence in these cities. We used the derived VLM 
information to understand the risk to infrastructure.

Research sample We studied 28 US metropoplises: New York, NY; Los Angeles, CA; Houston, TX; Philadelphia, PA; San Diego, CA; Jacksonville, FL; San 
Francisco, CA; Seattle, WA; Washington, DC; Boston, MA; and Portland, OR; San Antonio, TX; Austin, TX; Columbus, OH; Indianapolis, 
IN; Nashville, TN; El Paso, TX; Detroit, MI; and Memphis, TN, Chicago, IL; Phoenix, AZ; Dallas, TX; San Jose, CA; Fort Worth, TX; 
Charlotte, NC; Denver, CO; Oklahoma City, OK; and Las Vegas, NV.

Sampling strategy We selected the cities based on the 28 most populated US cities in 2020.

Data collection SAR dataset was obtained from the Alaska Satellite Facility here: https://asf.alaska.edu/. The groundwater data was obtained from 
the The groundwater data can be obtained from the US Geological Survey (USGS) (https://waterdata.usgs.gov/nwis/gw).

Timing and spatial scale The spatial resolution is 28m, while the temporal resolution is from 2015 to 2021. Although some cities may have a different 
temporal resolution due to the lack of SAR images for certain periods.

Data exclusions No data was excluded from the study.

Reproducibility All dataset can be reproduced by following the methods section described in the manuscript.

Randomization No experiments were conducted and the analyses did not involve radomization.

Blinding No experiments were conducted in this study.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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